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FOREWORD

The papers presented herein have been derived primarily from speakers' sum-

maries of talks presented at the Fifth Annual Flight Mechanics/Estimation

Theory Symposium held October 21 and 22, 1980, at Goddard Space Flight Cen-

ter. For the sake of completeness, abstracts are included of those talks

for which summaries were unavailable at press time. Papers included in
this document are presented as received from the authors with little or no

editing.



CONTENTS

Paper No.

Forword

SESSIONI

Feasibility Study of Using a Two-Plate Model to Approximate the TDRSSSolar
Pressure Effects

F. K. Chan (SASC)............................

Improved ChebyshevSeries Ephemeris Generation Capability of GTDS
S. Liu and J. Rogers (CSC) and J. Jacintho (GSFC) ............

An Economical Semi-Analytical Orbit Theory for Retarded Satellite Motion
About an Oblate Planet

R. A. Gordon (GSFC)........................... 3

Another Semi-Analytic Orbit Theory
K. T. Alfriend (NRL)........................... 4

Semi-Analytical Orbit Determination
P. J. Cefola (CSDL) ...........................

Semi-Analytical Satellite Theory and Sequential Estimation
P. J. Cefola and S. P. Taylor (CSDL)...................

SESSIONII

Estimation of KalmanFilter Model Parameters Froman Ensembleof Tests
B. Gibbs, D. Haley, W. Levine, D. Porter, and C. Vahlberg (BTS) .....

Analysis of Estimation Algorithms for AutonomousNavigation with TDRSSData
J. Dunham,A. Long, P. Gural, K. Preiss, and H. Sielski (CSC) ...... 8

Precision Orbit Computations for Satellite Altimetry
J. G. Marsh (GSFC)and R. G. Williamson (EG&GWASC)........... 9



CONTENTS(Continued)

Paper No.

AutonomousNavigation Accuracy Using Simulated Horizon Sensor and Sun
Sensor Observations

H. T. Hendrickson and G. E. Pease (Aerospace Corporation) ....... 10

Accurate Mars Flyby of Galileo Using Viking Lander
F. B. Winn, E. W. Walsh, M. P. Ananda, and F. T. Nicholson (JPL) .... 11

SESSIONIll

An Analysis of GDOPin Global Positioning SystemNavigation
B. T. Fang (CSC)............................. 12

A Quadrilateralized Spherical CubeEarth Data Base
F. K. Chan (SASC)............................ 13

Adaptive Guidance and Control for Future RemoteSensing Systems
J. W. Lowrie and J. E. Myers (Martin Marietta) ............. 15

The Resurrection of LANDSAT-2Attitude Control System
P. S. Hui (GSFC)............................. 16

Doubly-Periodic Orbits in the Sun-Earth-MoonSystem
R. Farquhar and D. Muhonen(GSFC)and D. Dunham(CSC) .......... 18

SESSIONIV

Attitude Ground Support System for the SMM
G. Nair (CSC) .............................. 19

Inflight Calibration and Performance Evaluation of the Fixed HeadStar
Tracker for SMM

P. Gambardella and R. Thompson(CSC)................ 20

Inflight Calibration of the Fine Pointing Sun Sensor on SMM
P. Gambardella and R. Thompson(CSC)................... 21



CONTENTS (Continued)

Paper No._

SESSION IV

MAGSAT Attitude Dynamics Control: Some Observations and Explanations

T. H. Stengle (GSFC) ........................... 22

The Response of the SEASAT and MAGSAT Infrared Horizon Scanners to Cold
Clouds

S. Bilanow and M. Phenneger (CSC) .................... 23

Spacecraft Momentum Management Procedures

L. C. Chen (General Software Corporation), P. B. Davenport (GSFC), and

C. R. Sturch (CSC) ........................... 24



SESSION I

J. Teles, Chairman



FEASIBILITY STUDY OF USING

A TWO-PLATE MODEL TO APPROXIMATE

THE TDRSS SOLAR PRESSURE EFFECTS

F. K. Chan

Systems and Applied Sciences Corporation

6811 Kenilworth Avenue Suite 500

Riverdale, Maryland 20840

ABSTRACT

An investigation was performed to determine the feasibility

of using a two plate model to approximate the Tracking and Data

Relay Satellite (TDRS) in orbit propagation, taking into account

the effects of solar radiation pressure. The two-plate model

comprises one plate which always points to the earth, and the

other which is hinged to an axis normal to the orbital pland and

is always rotated so that its normal makes a minimum angle with
the direction of the sun.

The results indicate that it is sufficient to take three par-

ameters (i.e., the areas of the two plates and the reflectivity

of the earth-pointing plate) to achieve an accuracy of one meter

during a 24-hout orbit propagation.

This work was supported by NASA Contract No. NAS5-25139.

The authors wish to acknowledge the programming assistance

provided by Michael Toporek.
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SECTION 1 - INTRODUCTIOI_

Most of the work involving solar radiation pressure on

orbiting satellites has so far been limited to those which are

spherical and which have circular nominal orbits. The compara-

tively few studies which are less restrictive are still based

on very simplified models. For example, the work of Eliasberg (I)

deals with an elliptically orbiting spherical satellite and is

concerned with the first order perturbation effects expressed

in terms of Keplerian elements. The work of Fang (2) deals

with a circularly orbiting spherical satellite with a perfectly

reflecting earth-pointing disk. It is concerned with the first

order effects expressed in terms of along-track, cross-track

and radial components. Moreover, it also deals with the physical

insights into the modeling errors connected with tracking and orbit

determination of the Tracking and Data Relay Satellites (TDRS).

On the other hand, the work of Georgevic (3) deals only with the

computation of solar radiation force on a cylinder and on a

parabolic reflector, but does not deal with an orbiting satellite.

(Even then, the computation for the parabolic reflector is further

simplified by assuming that the ratio of the force on the illumin-

ated area of the reflector and the force on the whole area of the

reflector is the same as the ratio of the corresponding projected

areas. It is obvious that this assumption, introduced to eliminate

the cumbersome self-shadowing effects, is not really correct.)

The present work is concerned with the solar radiation

effects on the TDRS illustrated in Figure i.i, and modeled

as comprised of the 69 components listed in Table i_i. (In

the course of the present study, a novel method, simple in

comparison to other existing methods, for computing self-shadowing

was formulated but this consideration was not included in computing

the net solar radiation force on the satellite). The orbit of

the TDRS is taken to be representative of a realistic one in that

it is not nominally perfectly circular. The study also considers

the question of how accurately the 69-component TDRS can be
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approximated by a two-plate model, i.e., one plate is hinged tc

an axis normal to the orbital plane and is always rotated to

make a maximum angle with the sun, while the other plate is

always earth-pointing. This two-plate model has the capability

of handling up to four solve-for parameters, i.e., the area and

reflectivity of each of the two plates.

Section 2 is concerned with the analysis of a differential

correction procedure to obtain the values of these four solve-for

parameters. A reference orbit for the 69-component TDRS is

first generated. Its orbital position at regular intervals of

one hour is then used as epoch elements of the two-plate model

to obtain the values of the parameters which yield the best

approximating orbit over the next 24 hours.

Section 3 summarizes the numerical results obtained in

this feasibility study, and presents tabulated and graphical

results for rapid comparisons.

Section 4 discusses the quality of the results, and the

applicability of the two-plate model for use in orbit determination

purposes.

1-3



FIGURE i.i THE TDRS SATELLITE
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17

18

19

20-69

TABLE 1.1

DETAILS OF 69-COMPONENT MODEL

Description Area (m2) Reflectivir 7

Solar Panel 1 14. 7553 0.0

Solar Panel 2 14.7553 0.0

SCL Antenna 3.13761 0.5

C-Band Antenna 2.67112 0.5

Solar Sail 0.90593 1.0

Antenna Feed

1 (top) 0.00462 1.0

Antenna Feed

2 (top) 0.00462 1.0

Antenna Feed

i (bottom) 0.29570 1.0

Antenna Feed

2 (bottom) 0.29570 1.0

Antenna Feed

i (side) 1.11771 1.0

Antenna Feed

2 (side) 1.11771 1.0

Main Body (top) 4.03665 0.5

Main Body
(bottom) 4.03665 0.5

Main Body
(side I) 1.1599 0.5

Main Body

(side 2) 1.1599 0.5

Main Body

(side 3) 1.1599 0.5

Hain Body
(side 4) 1.1599 0.5

Main Body
(side 5) 1.1599 0.5

Main Body
(side 6) 1.1599 0.5

Sections of Computed by
POLYN 1.0

stationary

antennae

Components of _:orma!

X Y z

Normal makes

minimum angle

with sun

II I, _0

Points to

White Sands

Points to

Los Angeles

0 0 i

0 0 1

0 0 1

0 0 -I

0 0 -I

0 0 1

0 0 -I

0 1 0

.866 .5 0

.$66 -.5 0

0 -I 0

-.866 -.5 0

-.866 .5 0

Computed by POLIq_
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SECTION 2 - ANALYSIS

This section is concerned with the analysis of a

differential correction procedure to obtain the values of

the four solve-for parameters incorporated into the two-plate

model.

For convenience, let us introduce the following

notation:

f(t) = position vector of 69-component TDRS

at time t

_(t, _) = position vector of two-plate model at time t

= (_,_,_,,_4_ = 4 parameters for two-plate model

Q = loss function defined

25

as Z

£--!

2

The problem is then to obtain the values of _ such that Q

is a minimum. It is obvious that the minimum of Q is given by

the necessary condition _. -- 0 where j = i, 2, 3, 4.
J

The loss function Q may also be written as

2£

(2-1)

The necessarycondition for minimum is

1,2,3,4

(2-2)
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The function _(ti,_ ) may be expanded in a Taylor series about
an a priori value _, .

,_ + ....a_Xk-- _'Xk -+ (2.3)

where _k is defined as

Let

L_o(}_ = o4 k - cx_s k
k=i,2,3,4 (2.4)

(2.5)

Substitution of equations (2.3) and (2.5) into (2.2) yields

to first order

6:I k=_

j=i,2,3,4 (2.6)

Interchanging the order of summation yields

Z

Let

j=I,2,3,4

j,k=l,2,3,4

(2.7)

(2.8)

I.-|
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Equation (2.7) then becomes

4

k--I

j=i,2,3,4 (2.10)

It remains to solve for _Wk where k=i,2,3,4. This constitutes

the first iteration in the differential correction procedure to

solve for the value of _ such that Q is a minimum.
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SECTION 3 - RESULTS

This section summarizes the numerical results in this

feasibility study, and presents tabulated and graphical results

for rapid comparisons.

Numerous computer runs were made for the TDRS with epoch

elements:

XO = 31,662,513.0 m

Yo = -27,523,890.0 m

Zo = 0.0m

= 2,012.15997 m/sec
o

Y = 2,314.7253 m/sec
o

Z = 376.58528 m/sec
o

One set of runs had epoch time set at Day 183.0, Year 1980 (i.e.,

July i, 1980 which is close to the summer solstice), and another

set had epoch time set at Day 275.0, Year 1980 (i.e., October i,

1980 which is close to the autumnal equinox). Each of these sets

of runs was made for the cases of N=I,2,3 and 4 parameters. The

parameters were aligned in the following sequence which is

probably the order of decreasing importance:

_i = area of sun-pointing plate (M 2)

_2 = area of earth-pointing plate (M 2)

e3 = reflectivity of earth-point plate

e 4 = reflectivity of sun-pointing plate

The initial values of these parameters used in the first iteration

of the differential correction procedure were taken to be the

following:

N = 1 2 3 4

= 36.6 29.5 29.5 29.5
a0,1

= 0.0 18.81 18.81 18.81
s0,2

= 0.0 0.0 0.74 0.74
0,3

= 0.0 0.0 0.0 0.0
_0,4

The tolerance e for testing convergence of the iterations
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(i.e.,l_l<£) was taken to be 0.01. The values for the stepsize

for computing the partial derivatives was taken to be 0.i. In the

runs described above, convergence was achieved after two or three

iterations. Figures 3.1 and 3.2 summarize the results of these

computer runs. The symbols appearing on the horizontal axis in

these figures have the following connotations:

0 = The sun is overhead with respect to the satellite

U = The sun is underfoot with respect to the satellite

A = The satellite is moving away from the sun

T = The satellite is moving toward the sun
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SECTION 4 - CONCLUSION

This section is concerned --_ - _-_ _ .... =_{_n _ eh_

results obtained in Section 3, and also an attempt to relate

them to results obtained in other investigations.

From Figures 3.1 and 3.2, it is seen that the following

observations may be made:

i. The maximum deviation of the two-plate model from

the 69-component TDRS is essentially cyclical with

a 12-hour period.

2. The magnitude of these deviations decreases as the

number N of parameters increases, as would be

expected.

3. There is a pronounced phase change of this period

curve in going from the case of N=I to N=2.

4. The curves for the cases of N=3 and N=4 are essentially

identical. Moreover, the amplitude of oscillation is

so small that they are almost constant.

A computer run was also made comparing the 69-component TDRS

with and without solar radiation pressure effects. The results

are plotted in Figure 4.1.

It is noted that in this case the curve is essentially sinusoidal,

unlike those in Figure 3.1 and 3.2. Moreover, the maximum deviation

occurs when the sun is overhead or underfoot in Figure 4.1, unlike

the cases of N=I and N=2 in Figures 3.1 and 3.2.

Finally, it is interesting to recall the results obtained by

Fang (2) who observed that:

i.

•

In orbit propagation, the least perturbation occurs

when the sun vector is parallel to the satellite

velocity vector in the beginning, and the worst

perturbation occurs when the sun is overhead or

underfoot in the beginning.

TDRS orbits determined from a one-day tracking arc

tend to be less sensitive to solar pressure errors

if the tracking arc begins when the sun is directly

overhead or underfoot. This is contrary to the

(previous) result for solar pressure perturbations

in the absence of tracking•
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From the numerical results of this feasibility study, it is

seen that the 69-component TDRS can be accurately replaced by

the two-plate model. It suffices to take only three parameters

to achieve an accuracy to within about one meter. Moreover, it

is sufficient to use only one approximating orbit throughout

the 24 hour period, instead of 24 approximating orbits regularly

spaced throughout the day.
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Improved Chebyshev Series Ephemeris

Generation Capability of GTDS

S. Y. Liu*, J. Rogers*t

Computer Sciences Corporation

and

J. J. Jacintho

Goddard Space Flight Center

ABSTRACT

This paper describes an improved implementation of the

Chebyshev ephemeris generation capability in the opera-

tional version of the Goddard Trajectory Determination

System (GTDS). Preliminary results of an evaluation of

this orbit propagation method for three satellites of

widely different orbit eccentricities are also discussed

in terms of accuracy and computing efficiency with respect

to the Cowell integration method. An empirical formula is

also deduced for determining an optimal fitting span which

would give reasonable accuracy in the ephemeris with a

reasonable consumption of computing resources.

*Work was supported by the Mission Software Section,

Code 571.2, Goddard Space Flight Center, NASA, under
Contract No. NAS 5-24300.

tNow at University of Arizona
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SECTION 1 - INTRODUCTION

This document presents an improved implementation of the

Chebyshev ephemeris generation capability in the Goddard

Trajectory Determination System (GTDS). The reimplementa-

tion was necessary to resolve a System Failure Report on

the operational version of GTDS and to improve the clarity

of the computer program code to make it more readable and

maintainable. The improved implementation employs the

same Chebyshev polynomial/Picard iteration scheme as pre-

viously implemented (described in References 1 and 2) but

exhibits a marked improvement in accuracy and efficiency

(see Appendix B). The improved implementation fits the

Chebyshev polynomial to satellite ephemeris data displaced

as a function of time in accordance with the roots of the

Chebyshev polynomial. This displacement is dependent on

the degree of the polynomial.

The advantages of using Chebyshev polynomials as inter-

polating polynomials and the computational scheme in GTDS

are briefly described in Section 2. Section 3 discusses

general application of the improved implementation of the

Chebyshev method to orbits over a wide range of eccentric-

ity. The results are analyzed in deducing an empirical

formula for determining an optimal fitting span that would

consume a reasonable amount of computer resources and

still provide a reasonably accurate ephemeris. A brief

summary of conclusions is presented in Section 4.

Appendix A briefly discusses the properties of Chebyshev

polynomials, the formulation of an interpolating poly-

nomial consisting of a linear c_mbination of Chebyshev

polynomials of different degrees to represent accelera-

tion, and the integration of the interpolating
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polynomial to generate satellite ephemerides. Appendix B
contains the results of a comparison of the new and pre-

vious implementations of the Chebyshev ephemeris genera-

tion method in GTDS.
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SECTION 2 - THE USE OF CHEBYSHEV POLYNOMIALS

TO GENERATE EPHEMERIDES

2.1 ADVANTAGES OF USING CHEBYSHEV POLYNOMIALS AS

INTERPOLATING POLYNOMIALS

In principle, any function characterized by a discrete set

of values can be approximated by a polynomial or a linear

combination of polynomials. Such polynomials may be ex-

pressed as Chebyshev polynomials, Legendre polynomials,

Laguerre polynomials, or any other polynomial form which

is expedient for mathematical/computational analysis. For

instance, in the case of a satellite trajectory, the posi-

tions at a series of selected times determine a polynomial

consisting of a Chebyshev series within the time inter-

val. The significant advantages of using Chebyshev poly-

nomials to fit a satellite trajectory are that the error

in the approximation is distributed evenly over the inter-

val and that the maximum error is reduced to the minimum

or near-minimum value (References 3 and 4).

Once this interpolating polynomial is established, the

position of any other time within the interval can De

easily interpolated. If a long ephemeris is to be stored

for any reason, it is plausible to use a small amount of

computer storage to store only coefficients for the inter-

polating polynomial instead of using a large amount of

space to store the entire ephemeris. One familiar example

is the Solar/Lunar/Planetary Ephemeris File (SLP File),

which is stored as coefficients of Chebyshev polynomials

for GTDS and other trajectory determination systems to

interpolate noncentral body positions for evaluating per-

turbations on a satellite. Another possible application

would be to store the coefficients of Chebyshev poly-

nomials to represent the ephemeris of a Tracking and

2-6



Data Relay Satellite (TDRS) in the onboard computer of a
user satellite for autonomous orbit determination.

2.2 COMPUTATION SCHEME IN GTDS

In order to apply the mathematical theory described in

Appendix A, one must know the acceleration, _(_), as a

function of time to fit a Chebyshev interpolating poly-

nomial. However, this is not the case for near-Earth

spacecraft because of the nonlinearity of the perturbing

forces, namely _ depends on x which is in turn determined

from _. Therefore, the Picard iteration method is used in

GTDS to incorporate the Chebyshev series ephemeris genera-

tion method. The computational procedure is described in

the following paragraphs. For discussions related to the

mathematical aspects of the method, see Reference i.

Suppose an ephemeris is requested from t to t with a
a z

fitting span (or equivalent step size) of H which is equal

to (t b - ta). The entire ephemeris will consist of a

series of spans which are represented by different

Chebysnev interpolating polynomials. The default fitting

span in GTDS is 5400 seconds. The allowable range of the

degree of the Chebyshev interpolating polynomial is from

to 48 with a default of 36.

Within a fitting span, the roots (_k of the Chebyshev

polynomial of the highest degree plus i, (n + i)) in the

interpolating polynomial are first computed according to

Equation (A-7). These roots are then transformed back

into time, i.e., _ k + tk' k = i, 2, ..., n + i.

GTDS uses boundary conditions at the beginning of the fit-

ting span, i.e., the position and velocity at ta, to

obtain positions and velocities at tl, t2, ..., tk,

• --, tn+ 1 with a two-body central force field to start

the iteration scheme. With the positions and velocities

2-7



at t k available, the perturbations, _(_k ) can now be
estimated at these instants and the Chebyshev coeffi-

cients, Ci, are subsequently computed using Equa-
tion (A-If). At this point, the Chebyshev interpolating

polynomial for the acceleration, Equation (A-8), is es-
tablished.

The next step is to successively integrate the Chebyshev

interpolating polynomial twice according to Equa-
tions (A-14) and (A-17) to obtain interpolating poly-

nomials, Qn+l and Rn+2, for velocity and position,
respectively, in the fitting span (ta, tb). The posi-
tion and velocity with perturbations included at the end

of the fitting span, tb, or any other time can be easily
interpolated. The first loop of the iterative scheme is

essentially completed at this point.

In the next loop, GTDS uses positions and velocities in-

terpolated from the interpolating polynomials, Qn+l and

Rn+2, at the roots to estimate acceleration. After fit-
ting the polynomial to the accelerations, it is again in-
tegrated twice to obtain polynomials for velocity and

position. The position interpolated at the end of the
fitting span in this loop is compared with that obtained

in the previous loop.

This iterative scheme is repeated until the differences of

the position components of the two successive loops at

t b are less than a tolerance (default value =
i0 -b kilometers). At this moment, the fitting procedure

for the span (ta, tb) is completed.

After ephemerides are generated and the Chebyshev coeffi-
cients for velocity and position are optionally saved, the
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fitting span is advanced one step forward to

(tb, t b + H). This scheme is continued until all the

spans are fitted.
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SECTION 3 - APPLICATIONS OF THE IMPROVED IMPLEMENTATION OF

THE CHEBYSHEV EPHEMERIS GENERATION METHOD

The improved implementation of the Chebyshev ephemeris

generation method is applied to satellites of different

orbital eccentricities to study the behavior of the

Chebyshev polynomial representation in order to find an

optimal set of parameters, such as fitting span and degree

of the Chebyshev polynomial, for different satellites. A

series of computer runs on GTDS with the new Chebyshev

implementation was obtained. The ephemerides from the

Chebyshev ephemeris generation method are compared with

those from the Cowell integration method in terms of ac-

curacy and efficiency. The results are discussed

separately for a near-circular orbit, an elliptical orbit,

and a highly eccentric orbit in the following sections.

An attempt to find an empirical formula for determining

the optimal fitting span for these orbits is also dis-

cussed.

3.1 NEAR CIRCULAR ORBIT (ECCENTRICITY = 10 -3 )

The GEOS-3 satellite was chosen for this case study. The

eccentricity of the GEOS-3 orbit is 0.00098 and the semi-

major axis is 7225 kilometers. The fitting spans used in

this case range from P/4 to 2P, where P is the period of

the satellite. For each fitting span, several runs with

different degrees of Chebyshev polynomials were made. The

ephemeris of every run was compared by using the GTDS

Ephemeris Comparison Program with the reference ephemeris

generated Oy the Cowell integration method with a 24-sec-

ond step size using perturbations identical to those used

in the Chebyshev method. The maximum differences in posi-

tion vector, ,!IARlmax' between the two
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ephemerides are plotted in Figure 3-1 as a function of the

degree of Chebyshev polynomials and the fitting span.

The maximum difference decreases very rapidly as the de-

gree of Chebyshev polynomials increases. However, after

reaching a critical degree of the Chebyshev polynomials,
the maximum difference bottoms out and does not decrease

any further.

The saturation of the maximum difference occurs at a lower

degree of the Chebyshev polynomials for a shorter fitting
span. This saturation level generally increases with the

fitting span.

Since the step size of -24 seconds used in the Cowell inte-

gration method in generating the reference ephemeris is
relatively very small, the maximum difference in position

vectors between the Chebyshev and Cowell ephemerides can

be loosely regarded as the accuracy of the fit of the

Chebyshev polynomials. Therefore, Figure 3-1 demonstrates

one significant phenomenon: once the saturation level is

reached, for a particular fitting span, adding higher de-

grees of the Chebyshev polynomials not only does not im-

prove its accuracy, but decreases its efficiency. This is

further evaluated hy examining the computer resources,

mainly CPU time, consumed by each of the computer runs.

All the runs for GEOS-3 satellite were executed on the

GSFC IBM S/360-75 C1 computer. However, some of the runs

were executed in the "low-speed" core of the CPU, which is
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roughly three times slower than "high-speed" core. Also,
there are a number of runs executed partly in low-speed

core and partly in high-speed core. The CPU time consumed

depends on the proportion of high-speed core and low-speed
core used. This nonuniform CPU scale makes the comparison

not so straightforward. Instead of reexecuting these runs

in high-speed core, the CPU time of these runs are cali-

brated through force model calls, as described below.

In GTDS, the "Number of Times Forces Called For Full

Model" in the statistics report is provided at the end of

a run. For a numerical integration method, such as the

Cowell method or the Chebyshev method, the full perturbing

force, including harmonic geopotential field, noncentral

body gravitational field, and nonconservative forces, is

evaluated at each integration grid point according to the
options specified. The number of times the full perturb-

ing force is evaluated is proportional to the CPU time

used in a run. In Figure 3-2 this number is plotted

against CPU time for only those runs executed in high-

speed core. Although the points plotted are somewhat

scattered, there is a linear relationship between this
number and the CPU time.

For comparison, the number of times the full force is

evaluated (7236 times) and the CPU time (0.85 minute) are

also plotted in Figure 3-2 for the reference run of Cowell

method with a 24-second step size. It is interesting to

note that the Chebyshev method with any reasonable accu-
racy is much slower than the Cowell method. Consequently,

for ordinary purposes other than those that require

Chebyshev coefficients, it is at least not recommended to

use the Chebyshev method to generate ephemerides for a

spacecraft of circular orbit at a lower altitude.
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After the CPU time of the runs which were executed partly

in high-speed core are calibrated by using this linear

relationship, 1 the CPU time of all the runs of Chebyshev

method is plotted against the degree of the Chebyshev

polynomials in Figure 3-3 for different fitting spans.

The CPU time consumed is approximately linearly propor-

tional to the degree of the Chebyshev polynomials. The

CPU time is also plotted in Figure 3-4 against the fitting

spans for degrees 18, 28, 38, and 48.

The curves in both Figures 3-3 and 3-4 give the impression

that the fitting span of one satellite period would be the

most desirable one to use for the Chebyshev method as far

as CPU time is concerned. However, the accuracy of the

fit may not be desirable for the situation. For this rea-

son, the accuracy information is also included in Fig-

ures 3-3 and 3-4 by different shadings of the plot symbols

to avoid the possibility of drawing misleading conclusions.

Since the accuracy of the Chebyshev method bottoms out at

a critical degree of the polynomial (Figure 3-1) and the

CPU time used increases linearly with the degrees of the

polynomials, a trade-off can be performed to study the

benefit or penalty of using a higher degree than is neces-

sary.

The results of the trade-off study are presented in Fig-

ures 3-5, 3-6, 3-7, and 3-8 for fitting spans P/4, P/2, P,

and 2P, respectively, by combining the results in Fig-

ures 3-1 and 3-3. The CPU time or the accuracy is normal-

ized with respect to that of a data point

iThis calibration curve is not necessarily valid for other

experimental conditions or other satellites.
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corresponding to the critical degree of the polynomial on

the saturated portion of the accuracy curve. For example,

the CPU time used in a computer run for fitting a

Chebyshev polynomial of the ith degree over a span of P/4

is normalized with respect to the CPU time consumed for

fitting 13th-degree Chebyshev polynomials over the same

span, i.e.,

[(CPU) i- (CPU)I3]/[(CPU)I3]

Likewise, the accuracy of the fit is also normalized with

respect to the 13th-degree Chebyshev polynomials, i.e.,

(IA lmax,i- IA lmax,13)/(IA lmax,13 )

For the fitting span of P/4, CPU usage doubles without any

benefit at all when the degree is increased from 13th to

25th. Actually, the accuracy has deteriorated by about

i0 percent. If the degree is reduced from 13th to 12th,

the CPU consumption saved is only 0.6 percent, but the

penalty is a significant 70 percent decrease in accuracy.

Therefore, it is very desirable to predefine the require-

ment for support to be accuracy-bound or CPU-bound for

selecting the fitting span and the degree of the Chebyshev

polynomials. An arbitrary combination of these parameters

may either produce an ephemeris with accuracy so poor that

it is not usable or consume more computer resources than

necessary.

Another area of trade-off consideration is whether support

is accuracy-bound or storage-bound. The total number of

Chebyshev coefficients is directly proportional to the

degree of the Chebyshev polynomials and inversely
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proportional to the fitting span over a predefined arc

length. If these coefficients are to be saved in a
limited amount of space for general applications, such as

ephemeris representation on an onboard computer for satel-

lite navigation or autonomous spacecraft, an appropriate

combination of degree and fitting span must be selected

for an efficient usage of the storage within a required

accuracy constraint.

3.2 ELLIPTICAL ORBIT (ECCENTRICITY = 0.I)

The IMP-7 spacecraft, with an orbit eccentricity of 0.ii

and a semimajor axis of 223,670 kilometers, was selected

to represent the elliptical orbit. Three sets of computer

runs were obtained for fitting spans of P/4.5, P/2, and

P. The results are shown in Figure 3-9.

The behavior in the variation of accuracy with the degree

of the Chebyshev polynomials is essentially the same as

that shown in Figure 3-1 for a near-circular orbit. The

accuracy improves very rapidly as the degree increases and

then saturates after a critical degree is reached.

3.3 HIGHLY ECCENTRIC ORBIT (ECCENTRICITY = 0.9)

The ISEE-I spacecraft orbit, with an eccentricity of 0.91

and a semimajor axis of 75,500 kilometers, was selected as

representative of a highly eccentric orbit. With a fit-

ting span of P/4, equivalent to 51,600 seconds, the best

accuracy of the ephemeris represented by Chebyshev poly-

nomials of the 48th degree over one satellite revolution

(equivalent to a 2.4-day arc) is 228 kilometers with re-

spect to the reference ephemeris generated by the Cowell

method. An ephemeris with accuracy this poor may not be

very useful.
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Further tests were conducted with drastically reduced fit-

ting spans of P/40 and P/80. The results are presented in

Figure 3-10. The accuracy obtained was comparable to that
shown in Sections 3.1 and 3.2. As in the cases of cir-

cular orbit and elliptical orbit, theaccuracy curves show

the similar behavior in the variation of accuracy with the

degree of the Chebyshev polynomials.

3.4 AN EMPIRICAL FORMULA TO DETERMINE THE OPTIMAL FITTING

SPAN

Ideally, in applying the Chebysnev method, one would like

to obtain the highest accuracy with a minimum amount of

CPU time for the lowest possiDle degree and the longest

possible fitting span. However, so straightforward an

application is not possible because those factors compete

with each other in a rather complicated fashion as demon-

strated in Sections 3.1, 3.2, and 3.3. An attempt was

made to find an empirical formula for determining an opti-

mal fitting span in terms of satellite period.

From Figures 3-1, 3-9, and 3-10, it is obvious that a

longer fitting span requires a higher degree for the

Chebyshev polynomials in order to achieve acceptable fit-

ting accuracy, i.e., the fitting span should be propor-

tional to the degree of the Chebyshev polynomials. Fur-

thermore, the fitting span must be substantially smaller

for a highly eccentric orbit than for a circular orbit.

From these arguments, a very crude empirical formula re-

sults:

2
H = C ° DP (i - e) (3-1)

where H = the fitting span of Chebyshev polynomials in

terms of satellite period
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D = the degree of the Chebyshev polynomials

P = the satellite period

e = the eccentricity of the orbit
C = an empirical constant

The value of the constant, C, depends on the degree of the

Chebyshev polynomials,

C - 1 D _ 20
40

C - 1 D >20
20

To demonstrate the validity of this empirical formula, the

following examples are given and results are shown in
Table 3-1.

To represent the GEOS-3 ephemeris (e--_ 0) with Chebyshev

polynomials of the 10th degree, the fitting span computed
using Equation (3-1) is 2P, which gives an accuracy of

0.27 meter over 28 periods (2 days). If Chebyshev poly-

nomials of the 20th degree are desired for GEOS-3, the
fitting span given by the empirical formula is P/2, which

gives an accuracy of 0.13 meter.

For IMP-7 (e _- 0.i), the fitting span computed from the

empirical formula for a 40th-degree Chebyshev polynomial

is roughly 3P/2 with an accuracy of 20 meters. For a

20th-degree Chebyshev polynomial, the fitting span would

be P/2.5, giving an accuracy better than 0.2 meter.

In the case of ISEE-I (e __0.9), fitting a 48th-degree

Chebyshev polynomial requires a fitting span of P/40 to
achieve 0.02 meter accuracy. For a 30th-degree Chebyshev

polynomial, a fitting span of P/70 gives an accuracy of

0.03 meter.
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The empirical formula is applied to the Tracking and Data

Relay Satellite (TDRS) and the results are also included

in Table 3-1. The TDRS is to be a geosynchronous satel-

lite with an eccentricity of nearly zero and a semimajor

axis of 42,000 kilometers. The fittihg span computed from

the empirical formula for a 20th-degree Chebyshev poly-

nomial is P/2 which gives an accuracy of 0.14 meter for

the ephemeris over a 31-day arc of 31 revolutions. If a

40th-degree Chebyshev polynomial is chosen, the computed

fitting span is 2P which gives an accuracy of 0.16 meter

over the same arc length.

To further verify the validity of the empirical formula, a

nonexistent Satellite-X with an eccentricity of 0.5 and a

semimajor axis of 13,200 kilometers was tested. The peri-

gee height is 6,600 kilometers, about 200 kilometers above

the surface of the Earth, and the apogee height is

19,800 kilometers. The relati;e importance of all per-

turbing forces, such as a higher-order harmonic geopoten-

tial field, atmospheric drag, and solar radiation

pressure, exerted on Satellite-X varies at different

positions on the orbit causing the magnitude of the

trajectory variation to differ along the orbit. Near the

perigee, a shorter fitting span and a higher degree of

Chebyshev polynomials may be needed to meet required

accuracy criteria because of the effects of a higher-order

harmonic geopotential field and the atmospheric drag.

Near the apogee, a medium fitting span and medium degrees

of the Chebyshev polynomials may be required because of

the large curvature of the trajectory in combination with

the trajectory variation due mainly to the solar radiation

pressure. While in the vicinities of 90 degrees and

270 degrees of anomaly of the orbit, the trajectory is

rather linear and a lower degree and a longer fitting span

may be sufficient. It is not possible, however, to apply
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several different fitting spans and degrees over each

revolution in a single computer run setup with the current

GTDS, which only allows a uniform fitting span and a sin-

gle choice of degree for the Chebychev polynomials.

Two test runs were made with fitting spans of P/8 and P/2

computed by using the empirical formula, Equation (3-1),

for Chebyshev polynomials of the 20th and 40th degrees,

respectively. The accuracy for a P/8 fitting span with a

20th-degree Chebyshev polynomial is 0.55 meter, and

0.62 meter for a P/2 fitting span with a 40th-degree poly-

nomial over a two-day arc of 11.5 revolutions.

With the exception of the case of the 40th-degree poly-

nomial with a 3P/2 fitting for IMP-7, all the cases seem

to favorably support the validity of the empirical for-

mula. However, the formula still should be used with ex-

treme caution, perhaps only as.a rough guideline to

establish a preliminary set of parameters for the

Chebyshev ephemeris generation method.
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SECTION 4 - CONCLUSIONS

The Cheoyshev ephemeris generation method is reimplemented

in the operational version of GTDS. The conclusions from

the testing results for this new implementation are sum-

marized below.

• The new implementation is more efficient and pro-

duces more accurate ephemerides.

• The accuracy of the ephemeris generated by the

Chebyshev method increases with the degree of the

Chebyshev polynomials very rapidly but bottoms

out after a critical degree is reached.

• The accuracy is generally better for smaller fit-

ting spans.

• The efficiency of the Chebyshev method is mainly

related to the degree of the Chebyshev polynom-

ials and the fitting span.

• The Chebyshev method is slower than the Cowell

method. Unless Chebyshev coefficients are re-

quired, the Chebyshev method is not recommended

for use in general applications. A study is cur-

rently underway to further improve the efficiency

of the Chebyshev method by using the Brouwer-

Lyddane theory instead of the two-body theory for

the starter.

• A preliminary empirical formula was deduced to

determine an optimal fitting span with a desir-

able degree of Chebyshev polynomials in terms of

high accuracy of the satellite ephemeris and low

consumption of computer resources.
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It is also recommended that the conclusions of

any study involving the use of Chebyshev ephem-
erides obtained from the previous version of GTDS
should be re-evalutated, especially in regard to

accuracy.
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APPENDIX A - MATHEMATICAL THEORY OF THE CHEBYSHEV

ORBIT GENERATION METHOD

A.I PROPERTIES OF CHEBYSHEV POLYNOMIALS

The properties of the Chebyshev polynomials are most

easily examined in the normalized interval [I, -i]. Any

arbitrary finite interval [ta, tb] can be transformed

to the normalized interval [i, -i] by the change of vari-

able: 1

It - t 1
=1-2 a

b - _a
(A-l)

where = the normalized time variable

t = the start time of a polynomial fitting span,

a (i.e., the start time of an integration step in

GTDS terminology)

t b = the end time of a polynomial fitting span,
(i.e., the end time of an integration step and,

therefore,,,t b) - t corresponds to the"step size a

The Chebyshev polynomials are defined as a set of poly-

nomials

T. (_) =.cos i0 i = 0, i, ... (A-2)
1

iThe transformation could have been defined as

_= 2 a - 1

b -

so that t a would correspond to -i, and t b would corre-

spond to +i. Since Reference 1 and the GTDS software have

consistently used the definition as shown in Equa-

tion (A-l), this transformation is retained throughout

this document and the new software.
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generated from the sequence of cosine functions using the
transformation

e = cos-l_ -i < _ < 1 (A-3)

Clearly for the zeroth degree

T 0(_) = cos (0) = 1 (A-4)

and for the first degree

TI(_) = _ (A-5)

By repeated trigonometric manipulations, higher-degree

Chebyshev polynomials can be computed yielding the recur-

sion relation

Ti(_) = 2_Ti_l(_) - Ti_2(_) i = 2, 3, ... (A-6)

Table A-1 contains the first ten Chebyshev polynomials.

With simple algebraic manipulation, the algebraic func-

tions, _n, can be expressed in terms of a linear

combination of the Chebyshev polynomials. This is shown

in Table A-2. All the Chebyshev polynomials have a maxi-

mum magnitude of 1 in the interval [i, -i]. The Chebyshev

polynomials of degrees 0 to 3 are plotted in Figure A-I.

The function of a parabola, _2, is also plotted in the

figure as a linear combination of T 0 and T 2. Except

for T0, all other Chebyshev polynomials cross the

_-axis. The number of times that axis is crossed is equal

to the degree of the Chebyshev polynomial and only those
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Table A-I. The Chebyshev Polynomials

T0=I

T 1 =_

T 2 = 2 E2 _ 1

T3=4_3--3_

T4=8_'4--8_2 + 1

T5= 1655-- 20 _3+55

T6=32_6-4854+18_'2_ 1

T 7=64_7- 112_5+56_3--71_

T 8= 12858-256_6+160_4_32_2+1

T 9 =256 $9 _ 576 t_7+ 432 t_5 - 120 _3 + 9
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Table A-2. An Algebraic Function Expressed in Terms of a

Linear Combination of the Chebyshev Ploynomial

1 = T O

/_ = T 1

_2 = (T 0+T2)/2

_3 = (3T1 + T3)/4

_4 = (3T0 +4T 2 +T4)/8

_5 = (10T 1 + 5T 3 + T5)/16

_6 = (10T 0+15T 2+6T 4+T 6)/32

_7 = (35T 1 + 21T3 + 7T 5 +T7)/64

_.8 = (35T 0 + 56T2 + 28T4 + 8T 6 + T8)/128

_9 = (126T 1 ÷ 84T 3 + 36T 5 + 9T 7 + T9)/256
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Figure A-I. Chebyshev Polynomials of Degrees 0 to 3
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of odd degrees will cross the origin. The n locations at

which the Chebyshev polynomial Tn(_) crosses the _-axis

are the n roots in the interval [i, -i] and are given by

_k = Icos (2k2n- i)_ 1
k = i, ..., n (A-7)

The significant properties of using the Chebyshev poly-

nomials to fit an arbitrary function are that the error in

the approximation is distributed evenly over the interval

and the maximum error is reduced to the minimum or near-

minimum value (References 3 and 4).

A.2 INTERPOLATING POLYNOMIALS CONSISTING OF A LINEAR

COMBINATION OF CHEBYSHEV POLYNOMIALS OF DIFFERENT

DEGREES TO REPRESENT ACCELERATION

Each component of the acceleration vector exerted on the

spacecraft can be approximated by an interpolating poly-

nomial consisting of a linear combination of Chebyshev

polynomials:

n

_(_) : Pn(_): _ CiTi(_) (A-8)
i=0

where _ = the Cartesian component of the acceleration

vector

Pn = the interpolating polynomial of degree n

C i = Chebyshev coefficients for an acceleration
component

= the transformed time variable

The accuracy of this approximation is better when the

higher degrees of Chebyshev polynomials are included.

However, the benefit of including higher degrees drops off

quickly. This point is further illustrated in Section 4.
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It is well known that the Chebyshev polynomials are one of

the families which possess the property of orthogonality
(References 3 and 4). They are orthogonal in the interval

[i, -i] with respect to the weighting function,

w(_) =i/ /i- _2, i.e.,

_ i i
1 i - _2 Ti(_) Tj(_) d_ = 0, i _ j

_-.i_;1 1 IT i(6)] 2 d_ = A _ 0
1 /l - _2 i

(A-9)

where A. is a normalization factor which depends on i.
1

Making use of the property of orthogonality, as demon-

strated in Equation (A-9), the Chebyshev coefficients can

be evaluated

1 /_i I 1 Ti(_ ) _(_)
Ci = _ii /i- _ 2

i = 0, i, ..., n

d_

(A-10)

The above integral is difficult to evaluate because of the

complexity of _(_). However, it has been shown (Refer-

ences 3, 4, and 5) that Equation (A-10) may be approxi-

mated by

n+l

_ 1 )CO n + 1
k=l

n+l

C : 2 _ Ti(_k)_(_k )i n + 1
k=l

i = i, 2, • --r n

(A-If)
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where _k are the roots of the Chebyshev polynomial of

degree n + i, Tn+l(_). Therefore, with the accelera-
tions evaluated at all the n + 1 roots, the variation of

the acceleration in the interval [i, -i], corresponding to

the time interval [ta, tb] , can be represented by the

interpolating polynomial, Pn(_) , of degree n.

A.3 INTEGRATION OF CHEBYSHEV INTERPOLATING POLYNOMIAL TO

GENERATE EPHEMERIS

With the acceleration components represented by Chebyshev

interpolating polynomials as shown in Equation (A-8), in-

tegrating the equation once gives the velocity compo-

nents, _:

_(_) = n(_) d_ = _ C i Ti(_) d_ (A-12)
i=0

Through the use of Equations (A-4), (A-5), and (A-6), the

integration of the Chebyshev polynomials of different de-

grees can be obtained:

T0(_) d_ = TI(_) + K 0

/ ]TI(_) d_ = _ 0(_) + T2(_) + K 1

Ti(_) d_ = i + 1 Ti+l(_) 1 Ti (_)]i - 1 -i

i = 2, 3, ..., n

+ K i ,

(A-13)

where K0, KI, and K i are integration constants.

2-40



Substituting Equation (A-13) into Equation (A-12) and col-

lecting terms of Chebyshev polynomials of the same degrees
yields another interpolating polynomial of the following

form for the velocity components:

n+l

x(_) = /Pn(_) d_ = Qn+l(_) = i=0_ b i Ti(_) (A-14)

where Qn+l = the interpolating polynomial of degree n + 1

b = Chebyshev coefficients for a velocity compo-

1 nent

with

C 1

b 0 = K 0 + K 1 + ... + _--T O

1

b I = C O - _ C2

Cn+ 1 = Cn+ 2 = 0

2, 3, ..., n + 1

(A-15)

The integration constants in the expression for b 0 may

be evaluated from the initial velocity, i.e., X(ta) =

i):

I) -
n+l

i=l
b. T. (_ = i) = b 0 T0(_ = i) = b 01 1

(A-16)
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The interpolating polynomials for position components,

x(_), can be obtained by the same procedure:

n+2

x(_) = /Qn+l(_) d_ = Rn+2(_) = i=0_ a i Ti(_)
(A-17)

a 0 = x( _ = i) -

1

a I = b 0 - _ b2

n+2

a i T.(_=l I)
i=l

a i = _-{ bi_ 1 - bi+ ,

bn+ 2 = bn+ 3 = 0

i = 2, 3, ..., n + 2

= the interpolating polynomial of degree n + 2
where Rn+ 2 for the position component

With velocity and position represented by Equations (A-14)

and (A-17) in the interval [ta, tb], the ephemerides

of spacecraft at any other time within the interval can

now be accurately and easily interpolated.
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APPENDIX B - COMPARISON BETWEEN THE IMPROVED IMPLEMENTATION

AND THE PREVIOUS IMPLEMENTATION OF THE CHEBYSHEV METHODS

A series of GTDS computer runs was executed to compare the

new and the previous software implementations in terms of

their accuracy and efficiency. The accuracy was measured

with respect to the ephemeris generated with the high-

precision Cowell numerical integration method by using the

GTDS Ephemeris Comparison Program. The efficiency is sim-

ply a comparison of the CPU and I/O times consumed by the

two different Chebyshev implementations.

Three sets of test runs were made on GTDS with the GEOS-3

satellite (arbitrarily chosen) over a two-day span using

the Cowell method and the Chebyshev polynomial method of

the new and previous implementations. The comparison

results are presented in Table B-I. In these tests, the

ephemeris generated by the Cowell integration method with

a 24-second step size was used as a reference. The per-

turbation (or force model) included in the Cowell method

was identical to that used in the Chebyshev methods.

Table B-I shows that the maximum difference in position

vector of the ephemeris generated by the previous

Chebyshev implementation with a 48th degree polynomial

over a two-day arc is 97 meters with respect to the

ephemeris generated by the Cowell method, while the new

Chebyshev implementation with the same degree of poly-

nomial has a maximum position difference of only

0.25 meter. This represents an improvement of better than

two orders of magnitude in the relative accuracy.

The efficiency which is expressed as CPU time and I/O time

consumed on the IBM S/360-75 computer is also examined.
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The previous implementation used 8.012 minutes of CPU time
and 0.154 minute of I/O time, while the new implementation

used only 5.806 minutes of CPU time, a saving of 38 per-

cent, and a comparable 0.142 minute of I/O time.

The saving of computer resources can be viewed from

another angle by lowering the degree of Chebyshev poly-
nomials from 48 to 20 and 18. The results are also shown

in Table B-I. Fitting Chebyshev polynomials with much

lower degrees, the new implementation consumes four to
five times less CPU resources yet maintains better ac-

curacy than the previous implementation.

Results in Table B-I indicate similar conclusions with

more elaborate perturbation models, i.e., 8x8 geopotential

field, 14th order resonance geopotential field, atmos-

pheric drag, and solar radiation pressure as well as solar

and lunar gravitational fields.

The results presented in Table B-I are obtained with a

fitting span of one satellite period for both the new and
previous implementation. When the fitting span is in-

creased to two satellite periods, the new implementation

gives excellent results (I ARlmax = 0.12 meter) . How-
ever, after 80 loops in the iterative scheme, the previous

implementation has simply failed to satisfy the
10 -6 kilometer tolerance in fitting the first span and

the computer run was subsequently terminated without gen-

erating an ephemeris.

2-45



io

REFERENCES

Goddard Space Flight Center, X-582-73-176, Description

of the Numerical Integration of the Equations of Mo-

•

•

•

•

tion of a Space Vehicle Using Chebyshev Series,

T. Feagin, June 1973

Goddard Space Flight Center, X-582-76-77, Mathematical

Theory of the Goddard Trajectory Determination System

(GTDS), J. O. Capellari, C. E. Velez, and A. J. Fuchs,

April 1976.

Fox, L., and I. B. Parker, Chebyshev Polynomials in

Numerical Analysis• London: Oxford University Press,
1972.

Carnahan, B., H. A. Luther, and J. O. Wilkes, Applied

Numerical Methods. New York: John Wiley and Sons,

Inc., 1969

Snyder, M. A., Chebyshev Methods in Numerical Approxi-

mation• Englewood Cliffs, New Jersey: Prentice-Hall,
1966

2-46



AN ECONOMICAL SEMI-ANALYTICAL ORBIT THEORY FOR

RETARDED SATELLITE MOTION ABOUT AN OBLATE PLANET

Robert A. Gordon

Goddard Space Flight Center

ABSTRACT

Brouwer and Brouwer-Lyddanes' use of the Von Zeipel-Delaunay method is employed to

develop an efficient analytical orbit theory suitable for micro-computers. A succinctly simple

pseudo-phenomenologically conceptualized algorithm is introduced which accurately and

economically synthesizes modeling of Drag effects. The method epitomizes and manifests
effortless efficient computer mechanization. Simulated (Space Telescope) trajectory data is

employed to illustrate the theory's ability to accurately accommodate oblateness and Drag
effects for micro-computer ground based or on-board predicted orbital representation. Real

(SMM - Solar Maximum Mission) tracking data is used to demonstrate that the theory's orbit

determination and orbit prediction capabilities are favorably adaptable to and are comparable

with results obtained utilizing complex "Def'mitive Cowell Method" solutions on satellites expe-

riencing significant Drag effects.
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AN ECONOMICAL SEMI-ANALYTICAL ORBIT THEORY FOR

RETARDED SATELLITE MOTION ABOUT AN OBLATE PLANET

BY: ROBERT A. GORDON

(NASA/GSFC)

INTRODUCTION:

Brouwer I derived a first-order perturbation solution expressing the secular, short

and long periodic variations in the motion of an artificial satellite about an

oblate planet. Brouwer obtained separation of all the periodic terms by adapting

Von Zeipel's 2 technique to modify Delaunay's method for calculating the coeffi-

cients of the periodic terms through a succession of canonical transformations.

Delaunay's variables were introduced in order to simplify the canonical expres-

sions for the equations of motion. Brouwer developed the periodic terms to OC_I'2_

and obtained the secular variations toO{_z,). The resultant formulas are piece-

wise continuous with singularities existing for certain values of the eccentricity

and inclination which occur as poles in the algebraic expressions. Thus, the

equations are valid, except in the regions for which e_=O,_#llleO. , and I-_'CoSZi _

:0 e i.e., _t:&3._3 ° , the critical inclination. Lyddane 3 introduced Poincar_'s

variables and reformulated Brouwer's expressions as to remove the poles, and thus

the singularities arising from small eccentricities or inclinations in the Brouwer

theory.

This paper is the fruition of an effort to provide an optimal on-board ephemeris

representation employing an efficient analytical orbit theory suitable for micro-

computers. Brouwer/Brouwer-Lyddane's method is modified to develop an economical
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analytical orbit theory for satellite motion about an oblate planet which accommo-

dates J2, J3, and parts of the J4 zonal effects with the true argument of latitude

as the fast variable. The theory is applicable to circular and non-circular satel-

lites but singular for _=0 • This is satisfactory for the vast majority of our

satellite support. The choice of the true argument of latitude as the fast varia-

ble in difference to Brouwer-Lyddane's choice of the true longitude is a major

contribution to the economical variation presented here; it simplifies the com-

putation of the osculating inclination. J3 and portions of the J4 zonal effects

are considered in the theory in relation to their primary effects on the radial

and cross-track errors respectfully, and truncated in accordance with economical

computational consideration. Lyddane remarks that _"and _Nmust be used for com-

puting_ S and_ "t in his version; however, as demonstrated by Gordon 4 et al., this

results in a relative large radial error with respect to Brouwer for moderate

values of the eccentricity. This can be avoided by evaluating and with _)

for moderate values of the eccentricity and with _ _#for relative low values

fof the eccentricity. The theory presented here also computes and_'awith the

long-period contribution (J3) to the eccentricity. For some orbital parameters,

this can result in a significant improvement in accounting for intrack error due

to the oblateness perturbation and compares favorably with respect to the Brouwer

and Brouwer-Lyddane's orbit theories for the satellite cases presented in Refer-

ence 4. The theory presented here is further modified to incorporate a "cheap"

algorithm which accounts for drag effects semi-analytically. A succinctly simple

pseudo-phenomenologically conceptualized algorithm is introduced which accurately

and economically synthesizes modeling of drag effects. The method epitomizes and

manifests effortless efficient computer mechanization. Simulated (Space Tele-

scope) trajectory data is employed to illustrate the theory's ability to accurately

accommodate oblateness and drag effects for microcomputer ground-based or on-board
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predicted orbital representation. Real (SMM-Solar Maximum Mission) tracking data

is used to demonstrate that the theory's orbit determination and orbit prediction

capabilities are favorably adaptable to and comparable with results obtained

utilizing complex "Definitive Cowell Method" solutions on satellites experienc-

ing significant drag effects.

FORMULAS FOR COMPUTATION:

A computational flow diagram of a subroutine with a description of input and out-

"put parameters for that part of the modified Brouwer theory which accounts for

the oblateness effects is presented in theAppendix. Henceforth, this analytic

part of the current orbit theory will be represented by the symbolic function

Bg(t), where t designates the time of theory evaluation.

The theory is adapted to accommodate retarded motion due to drag by a pseudo-

physical secular relationship to describe decay in the semi-major axis. This

representation is inferred phenomenologically from the signature of the semi-

major axis Locus defined by osculating to mean 5 conversions of state vectors

of a drag perturbed satellite ephemeris.

OSCULATING-TO-MEAN CONVERSION:

Walter's algorithm 5 for osculating to mean conversion is unstable for low e in

Keplerian space; the apparent instability of the iterative osculating-to-mean

element conversion is removed by translating the iteration from mean Keplerian

space to mean Cartesian space.

Define:

-- Mean Keplerian Elements

-- Osculating Keplerian Elements
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Mean Cartesian State Elements

Osculating Cartesian State Elements

Given an osculating Cartesian state,we determine

Where _represents the Keplerian state two-body functional relationship to

the Cartesian state. Then employing the iterative algorithm,

X.P"'__-._'.,c"+(__X(_,),i.,,,,...,,

For j = O, 1, 2, . .., 10 or until the following criterion is satisfied:

Where E is some preassigned small positive number. Let this algorithm be

represented by the symbolic functional relationship,

I

SEMI-MAJOR AXIS DECAY RATE:

Applying the osculating to mean conversions at one period (_) intervals, we deter-

mine the semi-major axis decay over M periods, i.e., with

Given for i = I, 2, . .., M; we compete the mean semi-major axis decay rate

as

_=I ## - f# "_
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ORBIT PROPAGATION WITH "Bg":

TO update the orbital elements to time (A_=f-l_.) with the Bg theory, we assume

the orbital elements remain constant over one period and rectify the theory's con-

stants at one period intervals (with the a decay rate) up to the Nth period where

N - •
Employing the above iterative method we have

Evaluating the secular part of Bg we obtain

,--B9
Where _ _,_ 2,a....i N ==)p

I e"t,,• l_l 1 9Na

Then at timeA_the osculating elements are given by evaluating the full Bg

theory with

With TN = N x P. Let us represent the semi-analytic theory with the rectifi-

cation algorithm for retarded motion symbolically by "Bg."

TRAJECTORY DATA:

Trajectory data, i.e., osculating state vectors are used in a simulation to demon-

strate the Bg orbit theory capability in representing retarded satellite motion

about an oblate planet. It has been proposed that a secular analytic orbit theory

be employed for the on-board ephemeris representation of the Space Telescope. The
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SpaceTelescope can experience significant drag effects over a three-day span.

State vectors generated from a sample set of Space Telescope elements demon-

e

strates the Bg theory's superior ability to represent the Space Telescope

ephemeris. This will be demonstrated by three steps in the simulation.

Step No. 1:

A comparison is made between two Cowell ephemeris generations at two-hour inter-

vals, the "Truth Ephemeris" with drag included with a drag model constant CD =

2.0 versus the Cowell ephemeris with CD = O, i.e., no drag consideration over

a three-day span. The Space Telescope epoch elements is defined as:

(_, = 6778.140 km A = 117.6 m2

• = 0.001 _ = 10134 kg

= 28.2 degrees

_i = 19.78 degrees _p = 393.222 km

= 0 degree IlL = 406.778 km

= 0 degree

Note: Table No. 1 -- the maximum total error growth realized was (262.88 km).

Step No. 2:

An analytical method without drag model effects is fitted to the "Truth Ephemeris"

over a three-day span with the "Truth Ephemeris" state vectors as observation

data at two-hour intervals for a Differential Correction of the epoch mean ele-

ments of the analytical orbit theory. The analytical theory used is the Brouwer-

Lyddane which includes periodic terms.

Note: Table No. 2 -- the post trajectory data DC compare at the two-hour fre-

quency yields a maximum total error of (43.71 km).
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Step No. 3:

Step No. 2 was repeated employing the Bg orbit theory.

Note: Table No. 3 -- the post trajectory data. D(; compare at the two-hour fre-

quency yields a maximum total error of (1.30 km).

TRACKING DATA:

Real tracking data demonstrates the Bg orbit theory's favorable orbit determina-

tion and prediction capabilities. An orbit determination for a number of differ-

ent epochs employs real (SMM-Solar Maximum Mission) tracking data over a two-day

span to differentially correct the epoch state and drag model parameter for a

"Definitive Cowell Method" and the epoch mean elements for the Bg orbit theory.

The predicted ephemeris of the "Definitive Cowell Method" and the Bg orbit theory

is then compared with a series of state solutions determined over a two-day DC

arc at two-day intervals. A table of the comparable response of the Cowell and

Bg method is presented in Table 4.

CONCLUSIONS:

I. The osculating to mean algorithm described herein provides an accurate

first-order estimate to the semi-major axis decay rate.

D

Z. Tables 1 and 2 graphically demonstrates that the Bg orbit theory can

accurately accon_nodate significant drag effects on orbital motion and

that the a parameter can absorb virtually all of the significant drag

effects.

3. Table 4 implies that the Bg theory is competitive with a "Definitive

Cowell Method" in a least squares batch filter orbit determination for
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a

satellites experiencing significant drag effects. Thus this can expand

the class of satellites which can be operationally supported with a semi-

analytic orbit theory.

The Bg theory is suited for a ground-based or on-board microcomputer appli-

cations, providing an orbital ephemeris generation which does not require

a density table or analytic density model.

RECOMMENDATIONS:

1. Some adaptation of the Bg theory should be employed for the on-board

ephemeris representation of the Space Telescope.

o

o

Develop the state transition matrix for a truncated secular version of

IP

Bg for Karman Filter state estimation applications on microcomputers.

Bg be adapted by those various sites who require orbit ephemeris genera-

tion but does not have an orbit determination capacity. The mean orbital

Q

constants and the a parameter can be determined and distributed by

Goddard for satellites of interest as are now the Brouwer Mean Orbital

elements. This would lead to a uniform method at each of the various

sites who require such elements with a significant improvement in ephem-

eris representation for satellites experiencing significant drag effects.
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2

4

"'6

8

i0

12

16

Table #

IN TPACK ERROR (kln.)

EPOCH

PREDICTS

N

COWEi/b

8o/o3/1_ _

-O.L'/_

-2,82

-I0.:)9

-27.i_
-51.66

-91.9
-149.09
-22_.58

Bg

8o/o'_11_

-,0.32

0.22

0.66

-0.81

-?._6

-2_.28
-46.88

-86.26
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ANOTHER SEMI-ANALYTIC ORBIT THEORY

K. T. Alfriend*

Naval Research Laboratory

ABSTRACT

The Naval Research Laboratory for the past several years has been working on the develop-

ment of an accurate analytic orbit theory. The major stumbling block has been the large number
of terms in the coordinate (canonical) transformations. Recent research has been directed

toward the development of techniques for reducing the number of terms. A recent development

by Deprit shows considerable promise in this regard. A spin-off of Deprit's break through is the

framework of a semi-analytic theory which (i) allows recovery of short period terms, a drawback

of many semi-analytic theories, (ii) is accurate to 0 (J]), (iii) allows the use of any set of non-
singular variables. Currently the theory is restricted to the zonal perturbations but it is felt it

can be extended to include other perturbations.

*Head, Advanced Systems Branch, Space Systems Division, Naval Research Laboratory, Washington, D.C. 20375
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SEMIANALYTICALORBITDETERMINATION

P.Cefola*
CharlesStarkDraperLaboratory

ABSTRACT

This paper describes an orbit determination capability based upon a semianalytical satellite

theory. The goal is to achieve Special Perturbations accuracy with a significant increase in com-

putational efficiency, while maintaining the flexibility to simply include new physical models and

to easily truncate the theory based on actual accuracy requirements.

The semianalytical theory includes theoretical developments for the averaged equations of

motion, the coefficients in the Fourier series expansions for the short-periodic variations in the

orbit elements, and the partial derivatives of perturbed motion. The resulting algorithms employ

the recursive analytical approach for gravitational and third-body paint mass perturbations and

numerical quadrature constructions for the atmospheric drag and solar radiation pressure perturba-
tions. The development also includes a generalized interpolator architecture whose goal is the

rapid evaluation of the position, velocity, and partial derivatives at the output times. The inter-

polator architecture includes Hermite interpolation processes for the averaged elements and the
partial derivatives of the averaged elements, and a Lagrangian interpolator for the coefficients in the

short-periodic expansions. A short-arc interpolator for position, velocity, and the partial derivatives
of position and velocity is also included; this option is advantageous when the output times are

closely spaced. These capabilities have been implemented into a modified version of the Research

and Development Goddard Trajectory Determination System that operates on the Amdahl 470/V8

computer at CSDL. Differential Correction (DC) tests of the semianalytical orbit determination

package will be discussed.

*Section Leader, Space Systems Analysis, Air Force Programs Department.
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SEMIAHALYT!CAL SATELLITE THEORY AND SEqUENTIaL ESTIMATION

Stephen P. Taylor

Massachusetts Institute of Technology

and

Charles Stark Draper Laboratory

Paul J. Cefola

Massachusetts Institute of Technology

and

Charles Stark Draper Laboratory

ABSTRACT

Kalman filtering techniques are combined with a semiana-

lyrical orbit generator to develop a sequential orbit deter-

mination algorithm. The algorithm is investigated for com-

putational efficiency, accuracy, and rRdius of convergence

by comparison with truth ephemerides and a Cowell Special

perturbations _ilter (GTDS FILTER). Test cases relevant to

satellite navigation are examined.

Notation and Symbols

sub-bar (e.g., Z ) = vector

super-bar (e.g., R) = average or mean;

also statistical mean

(e.g., _E) = _ormal indication o_ the order of the

quantity

2

T

= [0 0 0 0 0 i]
%--

n = mean motion = /--r
va-

= second, ...)

Equinoctial Elements

a = semimajor axis

h = e sin(_ + I_) k = e cos(u + I_)

p = tanI(i/2) sin _ q = tanI(i/2) cos
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X = M + u + I_ = mean longi%ude

I = zetzogzade _ac%o:

supe=-ha% (e.g., _) = pzedicted estimate

supez-tilde (e.g., x) = updated es%ima%e
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I. IHTRODUCT!OH

The current trends in Earth satellite orbit determination

are toward sequential filtering and onboard computation [ I ].

The Global Positioning System (GPS) currently employs an

orbit determination algorithm that updates a batch estimated

nominal trajectory in real-time with an extended Kalman fii-

ter [2]. This system is designed to achieve an operational

accuracy within 1.5 m. Telesat, a satellite communications

system, has been using a sequential system to support all

station keeping operations for several yeers now, with both

improved accuracy and reduced costs [3]. Many other appli-

cations exist and will develop for which the timeliness,

accuracy, and efficiency of a real-time orbit determination

system are highly desirable.

Orbit determination processes require two capabilities:

the ability %o accurately propagate an orbit, given initial

conditions; and some estimation algorithm indicating how

observations of the satellite should be used in updating the

ephemeris. Advances in the technology of either capability

imply corresponding advances in orbit determination pro-

cesses. Recently, much work has been done by P. Cefola, et

al. [4], [5], [6], [7] of CSDL in extending Semianalytical

Satellite Theory to allow highly accurate and efficient

orbit propagation. A. Green [q] developed and used some of

these results in a batch DC estimation algorithm, finding

accuracies and convergence properties quite comparable to

high precision Cowell results. This paper explores the

implications of these advances in Semianalytical Satellite

Theory for sequential orbit determination, considering both

accuracy and efficiency through comparison with batch and

sequential filters available from GTDS and Green [q].

The organization of the paper is dictated by the struc-

ture of the orbit determination problem. Summaries of semi-

analytical satellite theory and sequential filtering are

presented first. Then their combination into an orbit det-

ermination algorithm is developed %o give the algorithm as

it was finally implemented. Results are not included here;

they will be presented at the conference.

2. SEMIAHALYTICAL SATELLITE THEORY

The accurate and efficient propagation of an ephemeris

requires both a precise model of the forces acting on the

satellite and an accurate and efficient means of integrating

the equations o_ motion. The equations of motion are given

bY Newton's Second Law as

d2r
[l]
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The terms from left to right are the satellite's accelera-

tion, the point-mass gravitational attraction, and all other

(disturbing) accelerations, due to drag, third bodies, solar

radiation, etc. The disturbing accelerations are typically

several orders of magnitude smaller than the point-mass

force.

Now any integrator is most accurate and efficient for

systems with only small nonlinearities and low frequencies

in the force model. Historically, this fact has motivated

tradeoffs between analytical methods, which use simplified

force models and analytical approximations to obtain the

integrated ephemeris efficiently, and numerical methods,

which retain the full force model and use high precision

numerical integrators to obtain the integrated ephemeris

quite accurately.

To increase the efficiency of an ephemeris generator, it

is necessary to decrease both the magnitude of the nonli-

nearities as well as the high frequency content of the force

model. The magnitude of the nonlinearities can be reduced

by choice of the orbital elements. For example, Keplerian

and equinoctial elements incorporate the effects of the

point mass acceleration, leaving only the disturbing accel-

eration %o be accounted for. The transformation from carte-

sian position and velocity to such an element set is the

basis of Gauss' VOP equations. [In the early days of modern

satellite orbit determination, many element sets incorporat-

ing different components of the disturbing acceleration were

experimented with; while they could very efficiently propa-

gate an ephemeris subject to only their selected perturba-

tions, %o achieve real-world accuracy they had to sacrifice

all efficiency gains with the inclusion of additional per-

turbations.] The high frequency content is removed by aver-

aging these frequencies out; more formally, by transforming

from the current osculating elements described by the VOP

equations, to mean elements described by "averaged VOP equa-

tions." For analytical theories, this whole process was

done by hand, necessitating simplified force models and

approximate methods. Semianalytical satellite theory,

developed after computers became inexpensive and versatile,

uses numerical methods to handle those force models that

cannot be averaged analytically. Since the tradeoff between

numerical averaging of the force model and the use of a high

precision integrator on it is in favor of averaging by a

factor of 10 %o 100, semianalytical satellite theory is much

more efficient than purely numerical theories. There is one

problem: the transformation back from the mean elements %o

the osculating elements. The high frequency components or

short periodics were averaged out and must be recovered

before the mean elements can be used for anything other than

long term, approximate prediction. The practical recovery

of the short periodics constitutes one of the important con-

tributions of the recent work at CSDL.
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Semianalytical satellite theory at CSDL is implemented in

equinoctial elements to avoid singularity problems. The

basic equations are shown formally in Table I. Key things

to note are the dependence of the mean element rates on only

the slowly varying elements _, and the expansion of the

short periodics _ ( _, _ ) as a Fourier series whose coeffi-

cients similarly depend on only. the slowly varying elements

_. Thus the elements _ * and short periodic coefficients

_( _ ) and _( _ ) can be and are interpolated, _llowing

e_ficient evaluation of the osculat'ing elements for many

output times other than those on the integration grid. This

is significant since for all averaged theories the computa-

tional cost is proportional to the number of integration

steps. Averaging allows large steps, but frequent output

points could require small steps.

3. SEQUENTIAL FILTERING THEORY

The equations of motion for %he osculating and mean orbi-

tal elements are shown in Table I. They are nonlinear, as

are the equations for range and range rate observations

given in Table II. The orbit determination problem is %o

estimate the satellite's orbit given some initial (a priori)

information and a series o_ observations over time. It can

be formulated as an optimal estimation problem:

estimate

A

x(t) , given

plant x = f(x) + w , x(t ) = x
..... o --o

observations h (x(tk),t k) + vYk =

[21

using the Yk ' such that the variance of the error _ - _ is

minimum. _o' _' and v are random and uncorrelated, _ and v

are white noise prouesses.

The resulting equations require propagating the probabil-

ity density function of _ (t) and are very difficult and

expensive to solve. As a result, most sequential orbit det-

ermination schemes use some suboptimal filter, usually

adapted from the Kalman filter, _hich solves the linear

optimal estimation problem. The two most oommon adaptations

are the Linearized Kalman Filter and the EMtended Kalman
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Table I. The Equations of Semianalytical Satellite Theory*

Osculating Elements

Mean elements

Osculating to mean transformation

(the near identity transformation)

Osculating VOP equations

Mean VOP equations

a*

a

a*

a

= [a,h,k,p,q, _] T

= [a,h,k,p,q] T

= [a,h,k,p,q, l]T

[a,h,k,p,q] T

a* = _* + Eq1(a,X)

da*

dt = n_6 + £ F (a,_)

da*

d--_-- = n_ + £ A l(a)_

Mean Element Rate

Short Periodics

Periodicity of short periodics

Series Expansion of Short

Periodics

Assume

2_
1 _ ---- --

A-_'I(i) = '_ JO E F(a,l) dl

fE___l(a,l) = _1 [EF(a,l) - £Al(a)]d_
n

- _ FE_Iqll(a,l) _ d_"
2a .J

_i (a_,>,+ 2_T)=_l (_,7")

21T

_l(a_-,_'_dY= 0

OO

_[(E,R_--E ___o(E_coso_
O=0

+ E Z O(a) sin _

* Extracted from Green [4], which contains a good derivation
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where

then

1 f2_

1/o_x_c_) ---_. _£¢aZ,[)

1 fO 2g

O0

_-ic_,i_ = _]
0=i

COS 0_. dl

sin 0"_, d_

6C (a--)sin 5_- £Dq (a) cos O_

where _C._(a'.._)= Z__. _._Xa C_) + 3 eDl.a (_-) E-6
On 2oa

_{_) = i_ _ z° ¢_)_ a__Cla ca)_
On 2Oa

Partials

Solve Vector

define partials

C = parameter vector in force model

w

a* (t)

{(t,to) = _ = B 2
_a* (t)
-- o

m

)a* (t)

(t,t O) = = B 3
_c

State partials equation

Parameter Partials Equation

Initial Conditions

_-(t't°) = _ _ a--* )a*------_

[_ _ £A I ]
d__ _(t,t ) = ___n + -- _(t,t )

dt o _a* _a* J o

c

{(t,.t ) : I, _(t, t ) : 0
o -- o

6-7



Table II. Range and Range-Rate Satellite Observations

Orbital elements

Mean equinoctial elements

Osculating elements

a_--*= [a,h,k,p,q, qT

a* = [a,h,k,p,q,l] T

Cartesian inertial element transformation

PI = T (a__*)

Cartesian local tangent element transformation

r
--s

= radius to origin of fram on earth's surface

PLT = Dp - r
--s

v = Dv + Dp--LT

range

observation
=/P--L " PP T --LT

range rate

observation
• 1
O=-- P . v

Q --LT --LT

6-8



Filter. These and other nonlinear filters are discussed in

Gelb [ 8 ].

The Linearized Filter is the most basic adaptation. The

a priori mean state _(%o ) is propagated forward in time to

generate the nominal trajectory

x ¢t) = f_¢_) , _¢t o) = _x¢t)o [3]
--N

estimate

plant

observation

The plant and observation equations [2] are then linearized

about this trajectory to obtain the linear problem

A

_X (t) , given

(t) = F(t) Ax(t) + w ; _x(t o ) = Ax

Ay k = H(tk) _x_(t k) + v

Ay k = h(X(tk),t k) - h(_(tk),t k)

where _f _ [4]

F(t) - _x I
- _ct_

H(tk) -- _ xN(tk),tk

The statistics of A x o, w_, and v carry over from above.

A Kalman filter can solve the explicit problem [q] opti-

mally, but here the implicit dependence on XN(t) makes the

solution suboptimal. An Extended Kalman Filter is essen-

tially a linearized filter that starts over, computing a new

nominal trajectory, after every observation. Though an

Extended Filter performs better than a Linearized Filter,

since the nominal trajectory itself is corrected, the use of

large step sizes and interpolators for e_ficiency in the

semianalytical ephemeris propagator precludes its use here.

Rather, a modification of the Linearized Filter will be

used, as discussed below. The equations for a Linearized

Kalman Filter are given in Table III.
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Table III. Linearized Kalman Filter Equations

Estimation Problem

x(t) = state to be estimated

y(t) = scalar observation of x(t)

w(t) = white state process noise

v(t) = white observation noise

plant x(t) = f(x,t) + w ; x(t ) = x

observations y(t) = h(x,t) + v at times t.
1

statistics E(w) = O , E(w(t) w__T(T)) = Q6(t- T) ,

E(v) = 0 , E(v(t) v(T)) = r6(t - T) ,

- T)E(x ) = x , E(X x = P
--o --O --O --o -O

X , w, v are uncorrelated.
-o --

Linearized Kalman Filter Solution

nominal trajectory
B

x (t) = f(_,t) ; --N o --O--N -- X (t) = X

prediction of estimate and covariance

transition matrix . [_ I_(t,ti_ I) = (_,t _(t,ti_ I)

_ (ti_l, ti_l) = I

state prediction
A ,%

Ax(t.) = #(ti, Ax(ti i) ;-- l ti-l) -- -
S%

Ax(ti_ 1 ) = Ax (ti_ 1 )
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covariance prediction

A J%

P(t i) = #(ti,ti_ I) P(ti_l)_T(ti,ti_ I) + A(ti,ti_ I)

^ %

P(ti_ I) = P(ti_ I)

t0

n(ti'ti-l) = ti_l'-i _(ti,T)O(T)%T(t~ i'T)dT

Update of estimate and covariance

observation partial
_h

H = -- (_,t i)

Kalman gain Ko

--i

T
P(t.)H.

1 1

^ T

HiP (t i) H i + r

observation

state update

Ay(ti) = y(t i) - h(_, t.l)

A

%
Ax(t.) = Ax(t.) + K. [Ay(t°) = H.Ax(t.)]

1 -- 1 --i 1 I -- 1

covariance update

m u

P(t i) = (I - --iK"H.l) p(t'l )

initialization

_u
Ax(t ) = 0
-- o

nu.

P _(tO) = p--o

6-]]



q. SEMIAHALYTICAL KALMAN FILTER DESIGN

The Kalman Filter equations as given in Table III usually

allow the means of propagating the nominal trajectory and

the transition matrices to be arbitrary, since the filter

only requires the values at observation times. However,

_hen optimizing the computations for efficiency, the struc-

tures of the integrator and the filter may become intert-

wined to produce a more efficient result. This is the case

for a Semianalytical Kalman Filter, where the use of inter-

polators for the state, the transition matrices, and the

short periodic coefficients has definite implications for

the overall filter design.

The Linearized Ka!man Filter uses observations over time

to improve the estimate of a satellite's orbit. Typically

the observation times are not known in advance, so the

underlying ephemeris generator must be able to efficiently

generate the values of the state and the transition matrices

at essentially arbitrary times and arbitrarily frequently.

This requirement does not decrease the efficiency of high

precision numerical integrators (such as Adams-Co_ell,

etc.), since they are constrained to small step sizes anyway

and automatically generate the required values at many

points in time. Analytical and Semianalytical integrators,

on the other hand, use very large step sizes, generating the

required state and transition matrices at only a fe_ points

in time. Such integrators use interpolators to obtain the

values at intermediate points in time. The contribution at

CSDL has been to develop an interpolation method that

retains the efficiency of analytical integrators and also

gives values _ith the accuracies of numerical integrators.

In the optimization of the Semianalytical Kalman Filter

for efficiency, the semianalytical integrator and the Ka!man

Filter each place requirements on the other.

The use of interpolators by the integrator over the inte-

gration grid dictates the use of a Linearized Kalman filter

inside the integration grid, although the solve vector can

be updated after processing all the observations in that

grid.

The filter, on the other hand, requires the transition

matrices _(ti,ti_.l ), q,(t_,__l ) between adjacent observation

times ti_ 1 and t_. The integrator can most readily supply

the transition matrices from the beginning of the integra-

tion grid, _(ti,to), q,(t i ,_ ). By using the equations

_(ti,t i_l ) = _(ti,t o) #(to,ti_l )

_(to,ti_l) = _-l(ti_l,to )

_(ti,ti_ I) = _(ti,t o) - _(ti,ti_ l) _(ti_l,to )

[5]
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we can restate the filter's requirement as supplying

• (_ ,to), g,(ti, _ ), and _-i (if,to). Nhi!e _-i (ti,to) could

be calculated directly from _(%i,to), the expense of comput-

ing matrix inverses motivates another solution. _(%. ,t ) is
O, ,

calculated from a Hermite interpolator using int_gra_lon

grid values and rates. Since the rate of _-i (t,_) can be

calculated as

_-l(t,to) = -¢-l(t,t O) _(t,t O) ¢-l(t,to) [6]

a similar Hermite interpolator

_I (ti,to). This interpolator is

lyrical integrator.

can be constructed for

included in the semiana-

The last requirement of the filter on the integrator is

the calculation of A, the contribution of the state process

noise. Due to the difficulty in defining Q, the process

noise strength, A, will be calculated as linear in time

A = A (t i - ti_ I) [7]

This follows the procedure already

and appears to _ork quite well.

incorporated in GTDS {9]

The implementation of the rest of the filter equations is

straightforward and follows soft,are already in the GTDS

FILTER subroutines.

A procedural statement of the final algorithm for imple-

menting this Semianalytical Kalman Filter design is given in

Table IV.

5. CONCLUSIONS

An algorithm for implementing a Semianalytical Kalman

Filter has been presented. Its implementation is currently

being completed. Results will be presented at the confer-

ence.
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Table IV. The Semianalytical Kalman Filter Algorithm

Due to use of a Rungekutta integrator, we mayconsider only one

integration grid step; all others are processed identically.

Operations on the Integration Grid

update x = x + _x x =
I. t = tO ....

update P = P

inititalize _ = 0

_(to,t O) = I

_(t ,t ) = 0
o o

¢-l(t ,t ) = I
o o

save in _s

save in _s

2o t = t + At do averaged integration
o

A

obtain x(t), _(t,t ), _(t,t )
-- 0 O

set up mean interpolators

A

x, ¢, C 1

3. t = t
o

+ At set up interpolators for short periodic

coefficients eCo(a) , £_(_)
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Operations on the Observation Grid

1. obtain the new observation, Y(ti), at time t = t..l

2. interpolate for x(ti) , ¢(ti,t ) _(t.,t )-- 0 1 0

we already have ¢-i (t in Cs
o' ti_l )

3. interpolate for short periodic coefficients

o

_c__(a_-(ti)), £D__(a_--(ti))

construct the osculating elements

N

a*(t.) = a--*(t.) + E CC_o(a) sin aY - ED (a) cos C_-- 1 -- 1 -- --O --
O=i

5o transform to cartesian elements and construct the nominal observation

h(_(t i) ,t i)

the observation residual

Ay(t i) = y(t i) - h(_(ti),t i)

and the observation partials

+ B11B4]
Hi = ___h_x^ (xN'ti) = _--_-- '

m

__nI (a,X)

B 1 =
_a*

a eq_l (a, % )

B 4 =
_c

6. Compute the transition matrices

_(ti,t i i) = _(ti,t ) #-i- o (ti-l't) = _(t.,t ) _so 1 o

using _s = #-l(t i_l,to), and _s = _(ti-l'to )

T(ti'ti- I) = _(ti't o) - _(ti'ti- I) _'s
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7. Obtain predicted solve vector and covariance

%

Ax(t i) = _(ti,ti_ I) ax(ti_ I)

^ [_(ti,ti_ I) _(ti,ti_l)"
P(t.) =

l 0 I
[ _ (ti_ti-l)P(ti_ I)

T(ti'tlI °-I)]

+ A (ti,ti_l)

A (ti,t i_l ) = A . (t.l - ti-i )

8o Complete the update phase of the filter•

% T
P(t.) H.

1 1

Calculate the gain K° = T
1 (H. P(t.)H. + R)

1 1 1

update the state

A A

_(t.)_l = ax(t_ i ) + Ki(ay(ti) - Hi _x(t_ i ))

update the covariance

A

P(t.) = (I - KH)P(t.)
1 1

9. Save transition matrices for next observation

= _-l(ti, t )s o

_s = _ (ti'to)

interpolated

interpolated in 2

Go to step 1.
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ABSTRACT

This paper presents a methodology for estimating initial mean and

covariance parameters in a Kalman filter model from an ensemble of non-

identical tests. In addition, the problem of estimating time constants

and process noise levels is addressed. The work is motivated by practi-

cal problems such as developing and validating inertial instrument error

models from laboratory test data or developing error models of individual

phases of a test.
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1.0 INTRODUCTION

This paper presents a methodology for estimating initial mean and

covariance parameters in a Kalman filter model from an ensemble of non-

identical tests. In addition, the problem of estimating time constants

and process noise levels is addressed. The work is motivated by practi-

cal problems such as developing and validating inertial instrument error

models from laboratory test data or developing error models of individual

phases of a test.

Previous results in the literature [2,3] employ a Kalman smoother to

obtain a sufficient statistic for the estimation of initial mean and

covariance. Then the Expectation-Maximization (EM) algorithm [I] is

applied to iteratively obtain maximum likelihood estimates of the entire

initial mean vector and covariance matrix. The previous results are

extended in this paper to account for parameter constraints such as con-

straining variables that are physically unrelated to each other to be

uncorrelated. Further, the results are extended to consider time con-

stant and process noise level parameters. Previous techniques capable of

estimating initial mean and covariance parameters and dynamic parameters

require re-reunning a Kalman filter for each value of the parameter vec-

tor considered. The new approach presented here is more efficient in

that the filter need be re-run only for dynamic parameters.

System testing (for example, of inertial instruments in the labora-

tory and error mechanisms from flight data) is often done in multiple

phases that are physically different but linked dynamically in a given

test. In order to obtain models for different phases, the previous

results could be applied where the phase dynamics are stacked one on top

of the other. New results are presented that provide a simpler and com-

putationally improved approach that deals with each phase individually.

The new results are also useful when only one multiple phase test is con-

ducted, it is only desired to estimate the state in each phase, and the

state is unobservable in a given phase but observable over all phases.

7-2



In practical testing situations, suboptimal filters are often used.

Results are presented that account for filter suboptimality.

Theoretical convergence results for the present application of the

iterative EMalgorithm are presented. Both the case of observable and

unobservable per test dynamics are addressed. Also included are some

references regarding rate of convergence and the effect of constraints on
elements of the estimated covariance matrix.
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2.0 THE DL/EM APPROACH

The Data Likelihood (DL) algorithm was derived in [2, 3] during

analyses directed toward the estimation of mean and covariance parameters

of the initial distribution of certain discrete-time multi-dimensional

Gaussian random processes. The essential idea is to use Kalman smoother

(Bayesian) estimates of realizations of the initial conditions to esti-

mate the mean and variance of these initial condition distributions and

to test certain statistical hypotheses thereabout. The iterative DL

scheme arose in the process of attempting to divorce the a priori model

to be validated from the estimated model, and was observed to be of the

form of the Generalized Expectation-Maximization method described by

Dempster, et al [I].

The context of the problem is as follows. For each test, j , the

realization of the r.v. x is assumed to be described by

Xk,j = Ck,jXk-l,j + Wk, j , k=l,2,"',nj , (I)

ooo,Nj=l,

and to be observed by

Zk,j = Mk,jxk,j + vk,j • (2)

Here w and v are assumed zero mean, white, uncorrelated, Gaussian,

and independent of Xo,j for all j • It is assumed that Xo,j are

realizations from a Gaussian distribution with mean u and covariance

Z , u and Z unknown. In [2, 3] it is shown that the log likelihood

function for the process can be written as

log L(,,_) : log LML(,,_ ) + R ,

where
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log
N

i Z
LML(",Z) : -

j=l
log Z+P(J) I (3)

N
1 [_+p(j)]-I-

A

and R is independent of u , _ . Here Xo, j are maximum likelihood

(non-Bayesian batch least squares) estimates of Xo,j , and P(j) are

the associated estimation error covariances. Differentiating Log LML

with respect to u and _ and setting the derivative to zero yields the

equations

N

Z
j=1

EZ+P(j)] -I Exo,j-_] = o (4)

N

j=1
EZ+p(j)]-I (Xo,j.u)(Xo,j.u)t [_+p(j)]-I

N

Z
j=l

[Z+P(j)] "1= 0 •

(5)

It is further noted that the Kalman smoother (Bayesian) estimates

Xo,j _ Xo,j (u,Z) and associated estimation error covariance Pj_Pj(_)

are related to Xo, j and P(j) by

Xo,j= [_+P(J)] Z -I [Xo,j-IJ ] , (6)

pj : (p(j)-l+_-l)-I . (7)
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Then the iterative DL loop can be defined:

^ 1 N = ^
!Xo

Us l_j 1 'J s-l' s-1 ) '
(8)

1 N

j=l

A ^ _ ^ A

{pj(Zs.1 ) + [Xo,j(i_s.l,is_l ) . ijs] x

[Xo,j(___,___)- _]t},

(9)

(10)

Xo,j(_,_,_) : _ +Pj(_) _ [mo,j-__] , (11)

with iteration on s •

2.1 Theoretical Convergence

Theoretical convergence of the DL algorithm is addressed in detail

in references [4] and [5]. The first note begins by proving that the DL

algorithm is a Generalized Expectation Maximization algorithm. It then

follows that the DL algorithm produces a monotone increasing sequence of

likelihoods. It also follows, under the additional assumption that there

exists a pair x* , _* that maximizes the likelihood, that _* , u* is
m _ _ m

a fixed point of the DL algorithm. Finally, it is shown that the

sequence {ks _s}Z:O converges to some _o, _o assuming that _ < cl
' m m m s m u

for all s and some c •

There are two defects in this result. First, it is not guaranteed

that u_o , _o maximize the log likelihood. There is probably nothing to

be done about this. Dempster et al [1] remark, as is probably true, that
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_o _o_ ,_ will, in almost all applications, occur at a local, if not

global, maximum of the likelihood. Second, it would be desirable to

relax the assumption that s < c I . In [51 it is shown that s < cl

is automatically true provided all the tests are identically set-up. It

seems reasonable, but has not yet been proven, that a similar result

holds in general.

2.2 Constrained DL Estimates

In many potential applications of the DL method, the random variable

of interest (whose mean and covariance we desire to estimate) is of

rather large dimension. It is also often true that several of the param-

eters to be estimated are simultaneously poorly estimable and of rela-

tively little interest. The judicious constraint of some parameters thus

presents itself as a reasonable possibility. For example, if there is

reason to believe that some components of the random variable are physi-

cally uncorrelated, and any correlation is believed to be largely irrele-

vant, little is likely to be lost if the estimated covariance is con-

strained to exhibit zero correlation.

It is desired to obtain those values u and _ of the mean and

covariance of the r.v. under consideration which maximize the log likeli-

hood
\

1 N

L = log L(U,Z)ML = -7 Z loglZ+P(j)I
1

_1N
_-Z (Xo,j-") t [Z+p(j)]-I (Xo,j_u) '

(12)

subject to appropriate constraints. Three forms of constraints have been

explicitly considered. Within the DL iterative context, it seems that a

rather wide variety of constraints may be handled quite easily.
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The general approach taken here is to use Lagrange multipliers to

reduce the constrained maximization problem to a modified but uncon-

strained problem.

The first forms of constraint on u : [_i ] and _ = [_jk ] under

consideration here are

w

¢i : ai(_i-"i) : 0 , (13)

w

¢jk = ajk (_jk-_jk) = 0 . (14)

Here [ai ] and [ajk ] are "selectors",

01 if _. unconstrained
_. = I

I if _i constrained

(15)

_i if Ojk unconstrained (16)
ajk = if Ojk constrained

Clearly, reasonableness dictates that [ajk ] and [Ojk] = be

symmetric, and that Z > 0 . The problem now becomes that of obtaining

an unconstrained maximum to

L = L (,,Z)= L + Z _ a (ui-v i)
i i i

+ Z a (o o )_'jk" jk jk" jk "
j,k

(Again, it is clear that [Xjk ] must be symmetric.) To extremize
we set

(17)

L
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_L _L
= TC + diag(_ )[_ ]

_L=-_- + ax : 0
J

(18)

and

@L = @L

_'_ + [Xjk6jk]

@L
=T_+A=0 .

(19)

The explicit computations and solutions become rather tedious and
i

are not reproduced here. The complete details and several examples are

found in [6]. It should be noted that the use of Lagrange multipliers

has an important advantage that is not mentioned in [6]. It is shown in

@L l_jk=_jk and x _L I
= . i =_l_ri . . In words, solving[7] that _jk _jk

_i=ui

Lagrange multipliers gives the sensitivity of the log likelihood to the

constraint.

case where the mean u is partitioned as _ = l,.uIConsider the

L_]c

into its constrained and unconstrained parts. It is rather straight-
A

forward to show (see [6]) that the solution for u at each DL step is

given by

from which the effect of the constraints on

clearly visible. (Here the state estimates xi

partioned as u ,

at each iteration is

are also assumed
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xi = .)

Such a fomal solution is not generally avail able for the covariance

equations. However, several specific cases yield results of some inter-

est, One such case arises when z is partioned as

and we wish to constrain

Denoting

* _ *t *_12 : _12 ' _21 = _ 2 : S12 ' and S22 : _22 "

-M : M : . , (21)

M21 M22

where

N _ _ t ^

.: , (22)

It is shown in [6] that

S12 : Z12 ' (24)

Z22 : _22 " (25)
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One slightly disconcerting question which does arise though regards

the positivity of s11 in (23). It is presently not clear what condi-

tions on E12,$22 yield, z11>0 . The conditions on s12 are more open

to question since $22 is more naturally restricted. Perhaps a relevant

question is "how does one place a reasonable a priori constraint on a

cross-covariance matrix?" One reasonable choice for the problem at hand

might well be s12 = 0 . In this case Sll = Mll ' and the difficulty

regarding definiteness disappears.

A slightly different sort of result arises from the more specific

desire to constrain s to be of the form

with s12 = S_l = 0 , and s22 = diag (_22i) .

Then it is shown in [6] that the solution is

Sll = Mli ' (26)

r12 = z12 : 0 , (27)

M22ii i=j,
: . (28)

_22ij : 0 , i:j .

It is clear that the constrained lack of correlation forces _11

and E22 to exactly follow the data observed for each. It is important

to note that the above result can be applied to cases where elements of

Z12 or off-diagonal elements of _22 are constrained to known non-zero

values. Suppose the Xo, j can be expressed as
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Xo,j : u + Xlj + x2j (29)

where x2j is uncorrelated with Xlj , the covariance of x2j is known

and carries the known non-zero values mentioned above, and the covariance

?T
of Xlj is to be estimated subject to the constraints _'12 = '21 = 0 ,

Z22 = diag (a22i) . Then the results of equations (26), (27), (28) can

be applied where xo,j is re-defined to be

Xo,j : u + Xlj (30)

A second form of constraint on u and Z is

: a_ , and

= BZ* ,

* V*
Here _ ,L are assumed to be given, and _,B are undetermined

constants. For purposes of analysis, these constraints may be more

conveniently stated as

¢i : UlUi - UiUl : 0 , p_>i>_2, (31)

,A- _,

Cjk : allajk " ajkall : 0 l<_j,k<_p, (32)

(j ,k)#(1,1)

The Lagrange multipliers _i,_ik , then enter in the unconstrained

maximization of

L : L + Z _i¢i + Z _jkCjk • (33)
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The explicit extremizing solution for _ is given by

N=

Z I { Xo,i}
1 I

a = N _*t _-I u* "
(34)

A similar but quite complicated analytic solution for B

As was the case for identity constraints, this value of

derivational details are contained in [6].

is obtained.

B and

A third form of constraint of potential interest, applying only to

the covariance estimation problem, is that of a specified correlation

matrix, R = [Pij] , so that the covariance takes the form

Z : diag (av_i ) R diag (¢_) (35)

with a.. being the individual variance components.
11

functions are

Then the constraint

¢i"J = a.. - _ p.. _ = 0 . (iXj)IO 11 Ij jj
(36)

Clearly the usual properties of a correlation matrix are required.

The modified likelihood function is then

@r

L = L + _ Xij ¢ij "
i_j

= L+S •

(37)

We wish to find Z such that _ = 0 • Again, the details of the

solution are found in [6].
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2.3 Observabilit_

The effect of unobservable tests on the DL algorithm is discussed in

detail in reference [8]. The results can be summarized as follows:

(1)

(2)

The state space can be divided into an observable sub-

space and an unobservable subspace.

On the observable subspace the DL algorithm performs as

if the observable subspace is the whole space. Data and

estimates of z and u on the unobservable space have

no effect on the DL algorithm as applied to the observ-

able subspace.

(3)

(4)

The data and estimates on the observable subspace do

effect the algorithms results on the unobservable sub-

space and the correlations between unobservable and

observable subspaces.

If the DL algorithm is initialized with zero correlation

between observable and unobservable subspaces then the

correlation will remain zero and the DL algorithm will

not change the mean and covariance on the unobservable

subspace.

2.4 Estimation of Markov Parameters

In addition to estimating parameters of initial distributions, it is

often of interest to use data from multiple tests to estimate dynamic

parameters of the system, particularly parameters of Markov processes.

Several possibilities exist for such estimation, and three are discussed

very briefly here. It should be noted that such estimation likely is

most useful for consistency checking because of the innately poor identi-

fiability of such parameters during system tests of short time duration.

Further, all methods for their estimation are likely to be computation-

ally costly.
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In [9], Goodrich and Caines have presented a methodology for maximum

likelihood idenfication of system parameters based on data from repeated

independent tests. The likelihood function is based, as in the original

derivation of [3], on Kalman filter innovations, and the assumption of

independence of realization yields a rather tractable form. Methods for

modification of the procedure to allow for correlated tests should be

studied further. The computational burden can be high for this approach

since multiple Kalman filter passes are needed at each iteration.

Sun [10] has presented an application of the E-M procedure to the

simultaneous estimation of system initial state, process and measurement

noise levels, and system dynamics based on data from a single test. The

paper indicates that an extension to repeated tests may be possible.

Again, further study and extension seem necessary.

A third possibility combines several aspects of the DL methods as

previously described, the ideas of Goodrich and Caines, and other work in

maximum likelihood estimation.

Consider a dynamical system as described in equation (1), where

and Q may depend on some parameter vector _ (e.g., time constants and

process noise levels). Whether to solve for e,_,s simultaneously or

separately seems unclear as yet. For a given value of a , one might
^ A

obtain via DL the maximum likelihood estimates u(_),s(_) . Then, fixing

u,Z, numerical/gradient methods could be used to obtain the value _ to

maximize the likelihood. Also open to question is the variability of

-- one might assume a to be universally constant, constant over

groups of tests or unique from test to test.

An illustration of a possible implementation loop on such a proce-

dure is found in Figure I. We desire, again, to estimate _=E(Xo,i)

Z=E((Xo,i-u)(xo,i-_)t) , and the Markov parameter vector a . Dropping

the individual test indicator i for the moment, we have
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X = _I +X ,
O r

X r the random part of xo , and

P
xr
=Z.

The observation z may be decomposed into

Z = Z + Z
xo r '

a part due to Xo. and a random part. In Reference [11] it is shown that

the innovations zk may be decomposed as

zk = T k xo + zk.

where z_ is computed based on assumed filter and truth models of

x =0 . It is then possible to write the log likelihood function, given
o

_,Z,a, and indexing repeated tests by i,

(38)

-2 Iog p(zlu,[,_) + constant =

Z {loglZ+P(i)l+(Xo,i-.)t (Z+P(1))"1
i

(Xo,i-u) (39)

^ t -1

+ Z {logI i÷ tp:1
i,k Pzi ,k,kI I,K Zi Zi,k } "

If _ is known, this procedure reduces to the DL algorithm. If

is unknown then gradient procedures may be used in the maximization.

This requires differentiating the estimate for _ , but not for _,z .

Another idea is to solve for a for each test, and only for _,_ for

repeated tests. The proposed iterative loop is illustrated as the dotted

closure in Figure 1.
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In summary,the detailed analysis of the effect of Markov parameters

is a difficult problem which has really only been recently addressed. It
is felt that substantial additional effort maybe required to fully

develop adequate analysis methodology, but that failure to attempt to

address the problem in detail may lead to inadequate analysis capabil-
ities in someareas.
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3.0 MULTIPLE PHASE THEORY

Many systems are operated and evaluated in a sequence of phases.

The analysis of performance in one phase is carried out relatively inde-

pendent of results from other phases, and then results are combined at

the end. Although this procedure is not a constraint for many systems,

there is interest in studying it. This section presents the theory nec-

essary to combine the results from several phases on one test, then to

analyze the results using a cumulative methodology such as DL. An

approximation is presented which allows for reasonably accurate quick

cumulative evaluations. An extension of the theory is discussed at the

end.

Some framework, nomenclature, and assumptions need to be stated

before the theory is presented. It is assumed that the effects of least

squares estimates of errors from previous phases have been removed from

the data prior to its analysis in a Bayesian per phase filter, or equiva-

lently removed after data analysis is complete. The per phase analysis

is actually done with a Bayes filter, but the theory is developed start-

ing with a least squares (infinite prior) filter. The least squares

estimate of errors in the ith phase can be represented by (see Refer-

ence [12])

: _i + + xixiLs Xri - XTi_l
(40)

where

X

.ri

xi

 Ti.I

= Systematic error in this phase,

= Random error introduced in this phase,

= Residual estimation error from this phase due to Qi ' Ri '

= Residual estimation error from previous phase due to Qi-l' Ri-1 "
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The covariance of this estimate is

^

EC (xLS-,) (xLS-,) T) _i Pi
= + + PTi.1

(41)

where

T)
_i = E(XriXr i

: E(x xT)

- xT ).
PTi_I : E(XTi.1 Ti_ 1

The error at the transition time can be represented by (see References

[11], [13])

" : " "" (42)
*r cxi i

where the following statistics are obtained suppressing the

E(xixi)T= p

xT "= PTE(XT ) = cPcT + PT

E(xi xT) = pcT = PC

E(XTXoT) : 0

i subscript

(43)

These statistics can be calculated following data analysis using a

conventional Bayesian filter. If the initial states are augmented to the

state vector to provide a fixed-point estimate of errors, all necessary

covariances and correlations are obtained. For the state vector defini-

tion
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(44)

the covariance of estimation errors obtained from a fixed-point Bayesian

smoother will be

I, "_,]P * = (45)

N CN PTN]

Using the above, the correlation matrix C and the covariance of

transition-time errors which are independent of initial estimation errors

T 1
C = PCN PN

I

PT = PTN - CPcN

can be calculated

(46)

The max-likelihood information matrix is obtained as

I [:I (47)

Assuming that it is invertible, the max-likelihood covariance is obtained

and is given by

Ip I1P* : = (48)
P_I CT CPCT + P

The discussion thus far has focused upon manipulation of data and

covariances from one phase of a multiple phase system. The result is the
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max-likelihood covariance and by similar procedures, the estimate for the
combined state vector at the initial and transition times. Since the

error in the max-likelihood estimate, as represented by Equation (40) is

unbiased, the error in the estimate of the ith phase, although corre-

lated with the previous phase, is uncorrelated with all phases previous
to that. Hence, the multiphase max-likelihood covariance of the max-

likelihood estimate for the stacked vector of ui+Xri vectors is of the
banded form (see Reference [12]).

p =

- T 0 0 0 -
P1 -Pc 1

-Pc I P2+PT1 _PTc2 0 0

0 p3+PT2 _pT-Pc2 c3 0
T

0 0 P4+PT3 --Pc 3 Pc4

0 0 0 -Pc4 P5+PT4

(49)

This banded form has some interesting properties that lead to a use-

ful result, especially when the following often practical assumptions are

made:

(I) The derivations presented have already assumed that all states

in each phase are observable -- so that the max-likelihood

information matrix is invertible

(2) Interphase correlations can be ignored for preliminary cumula-

tive analysis giving an algorithm suboptimal in the sense that

information is thrown away but not in the sense that an approx-

imation is made.

Although the first assumption may not always be true, it may be

possible to redefine the state vector so that the unobservable states do
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not enter the system until the phase in which they are observable. This

can be accomplished automatically in a mathematical sense utilizing the

Singular Value Decomposition (SVD) algorithm. Thus, although the first

assumption maynot be able to be satisfied explicitly, there are ways to

accomplish its effect without degrading the fidelity of the model.
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4.0 USE OF SUBOPTIMAL STATE ESTIMATES IN MULTIPHASE ANALYSIS

It is often the case that data from the several phases under consid-

eration are obtained from Kalman-Schmidt filter/fixed point smoother

algorithms. Thus the algorithm for processing a test phase should be

capable of handling suboptimal gains. Even if the filter were optimal,

the equations for the suboptimal case would be applicable, and, in some

situations, might be preferable to equations assuming optimality.

It is also desirable that the processing for each phase be done

independently. In some cases, the processing for different phases may be

done by different organizations. Thus, the per phase data reduction must

use no information from other phases. The combination of phase estimates

is done as the final step in the data reduction.

Reference [14] defines the equations required for the phase data

reduction. These equations are fairly general and would apply to most

suboptimal filters. Also presented there are the additional recursive

equations which must be computed in a consider filter so that the phases

may be combined. These equations only apply to a Kalman-Schmidt filter

(which automatically computes the correct covariance matrix) but could be

modified for other suboptimal filters. The following section presents

the algorithm for combining the suboptimal (or optimal) estimates from

different phases.

4.1 Multiphase Reduction Usin_ Suboptimal Estimates

The output of each phase will be a suboptimal, smoothed estimate of

the state at initial time and transition time. Also obtained are the

various covariance and sensitivity matrices. The true state at the epoch

of each phase is assumed to have a mean and random component; i.e., for

phase i

i i i (50)
x0 : _ + xr •
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The DL method attempts to estimate i and cov (x_) by combining

results of different phases and tests. To do this, the state estimates

for each phase are manipulated so that they are in the familiar form

z - Hx0 + v . (51)

Consider the combination of phase l and 2 shown in Figure 2.

The value of x_ is
|

Phase 1 Phase 2

ipxT

> "2 Ll "2
to=l;T _T

Figure 2 Phase Combination

directly included in the phase 2 initial condition, i.e.,

x2 2 2 Txl= + Xr + (52)

where T is a transformation matrix (not to be confused with transition

time tT ).

Now consider the estimates o6tained from phase 1:

_ : wl+ xl+ _I

=' D_o(,l+xlr)+ D_oWT+ v_

^1 1 I 1
xT - DITCTX 0 + D2TW T + vI

(53)

(54)
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and from phase 2

^2= 2+ Txl+ R_x0 2+ Xr

D_0( 2+ 2+T 1,= u xr XT] + v_ .

(55)

These equations can be combined in matrix notation as:

m _ m

^ |

v

Af_

v

^ |

v

A_m

^2

x2
D

m

Olo

= D_TCT

D_0T¢ T
B

a

D_O 0

D_T 0

-yl

wT

y2

m •

Vo I
i

q i

+ vTl (56)

2'

_v0_]_]

l l _ 2 2 2where y = _ + xT and y = _ + xT . Notice that v_ and v are

correlated but are uncorrelated with vR . Also notice that there is

no a priori information on yl and y2_ but that the a priori variance

of wT is QT " Thus, equation (56) can be treated as three measure-

ments in a Bayesian least squares estimator for _l , WT and 32

where

:-V_-

E

is calculated in [14].
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If all states are observable, then 31 and -32 should be maximumlikeli-

hood estimates.

In order to better understand the result of this processing, we

assumethat the first two measurementsin equation (56) were processed

first (to estimate _l and WT) the third measurementwas processed

separately to estimate

2 = y2Ys + TxT . (57)

This can be done because the measurementerrors are uncorrelated. Then
2

we want to combine the estimates. Since y had infinite a priori

variance, all information in the third measurement will be used to estimate

2 yl
y if and wT were observable from the first two measurements,

i.e., the estimates of yl and wT will not change. Thus,

-2 _ T(¢T_I+_T)^2 _ T(¢T#I+_T) = y2 + Ys)2 : Ys
(58)

and the covariance of the error i_ the estimate of Y2 is

li]T 
Ys PYl

WT

(59)

The above analysis is similar to that given previously in the sense

that data processing and requirements analysis can be done phase by phase.
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Analysis of Estimation Algorithms for

Autonomous Navigation with TDRSS DATA 1
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ABSTRACT

An investigation was performed to determine an appropriate

estimation technique for onboard orbit determination using

Tracking and Data Relay Satellite System (TDRSS) data. The

two user satellite orbits which were studied are similar to

Landsat-D (near-circular, 700-kilometers altitude, near-polar

inclination). The following estimation algorithms were iden-

tified as candidates for use in autonomous navigation: (i)

the extended Kalman filter (EKF) with process noise, (2) the

EKF with consider parameters (CEKF), (3) the sequential Kal-

man filter with consider parameters (CKF), and (4) the batch

least-squares differential correction technique (DC). The

candidate estimators were evaluated with respect to their

performance with both baseline and worst case TDRSS measure-

ment errors and tracking configurations.

Two different modes of operation were studied. The one-way

uses Doppler data which are collected on the user satellite.

The two-way mode uses range and Doppler data which are col-

lected on the ground and transmitted in the command stream

to the user satellite for processing.

The actual data used in this study were simulated satellite-

to-satellite range and delta range from TDRS East and West

to the user, scheduled in 10-minute passes of six pairs of

range/delta-range observations per minute. Various tracking

frequencies were used, ranging from tracking once per orbit

iWork performed under NASA Contract NAS 5-24300
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to tracking every third orbit. Data sets of 12 or 24 hours

length were generated which simulated the expected range of
errors in the TDRS ephemerides, the onboard force model, and

the user clock (one-way only). Transient problems were also

simulated such as TDRS ephemeris updates, and passes of data

with large biases or high noise.

Identical data sets were used in evaluating the estimation
algorithms. The user satellite state was estimated for both

modes. For the one-way mode, the onboard oscillator frequency

bias was also estimated. The user ephemeris resulting from
each estimation process was compared to the truth model to

determine the accuracy and reliability of that estimation
process was compared to the truth model to determine the

accuracy and reliability of that estimation process in both
baseline and worst cases. The process noise levels in the

EKF were varied to determine the optimum range. The perfor-
mances of the CEKF and CKF were analyzed to determine an

appropriate set of consider parameters and their a priori

variances. In addition, a method of automating the DC pro-
cessing was evaluated.
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I. INTRODUCTION

National Aeronautic and Space Administration operational sup-

port of satellite missions of the future will require the

annotation of data collected onboard with ancillary data,

which includes the spacecraft orbit, attitude, and time, If

the spacecraft position and velocity can be determined en-

tirely onboard, it will improve the system responsiveness

by providing fully annotated payload data without the re-

quirement for post facto processing or other ground support.

Onboard data annotation will also decrease the ground support

requirements for spacecraft and attitude control and instru-

ment operations.

Toward this end, Goddard Space Flight Center (GSFC) is cur-

rently investigating the feasibility of autonomous space-

craft navigation with Tracking and Data Relay Satellite

System (TDRSS) data. The use of TDRSS data for onboard es-

timation has the advantage that the NASA will already be

using TDRSS for ground-based satellite tracking and the re-

lay of command and telemetry data. Therefore, TDRSS inter-

faces will already exist, and NASA spacecraft will be equip-

ped with TDRSS transponders. However, the major constraint

in the use of TDRSS is that only a limited number of users

may use the forware link over a given time span, which limits

the frequence of tracking contacts.

An onboard orbit determination algorithm must be selected

for use with TDRSS data that will provide both reliability

and accuracy. Three estimation algorithms are being studied

to determine their suitability for onboard use with TDRSS

data: the extended Kalman Filter (EKF), the batch least-

squares estimator, and the consider filter. The performance

of these estimators was compared with respect to: l)accuracy

using a nominal tracking schedule, 2) effect of reducing the

tracking schedule, 3) effect of large TDRS ephemeris errors,
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and 4) accuracy in the presence of anomalous or deleted

passes of data. This paper presents an overview of the re-

sults of the studies made, which are described in detail in
References 1,2, and 3. The work described herein was carried

out under Contract NAS 5-24300 using the capabilities of the

Research and Development Goddard Trajectory Determination

System (R&D GTDS) available at the time of the study (Refer-
ences 4, 5, and 6).

II. PROTOTYPE SYSTEM

A prototype onboard orbit determination system for use with

TDRSS data is being developed by the Advanced Systems Program

of the Office of Space Tracking and Data Systems (OSTDS) to

demonstrate its feasibility. This work includes analysis to

select a suitable estimation technique, and design and im-

plementation of a candidate system on a LSI-II/23 micropro-

cessor. The prototype system will be a combination of hard-

ware and software designed to simulate the onboard operation

and ground support of the orbit determination system.

Two tracking modes are being studies for use onboard, one-

way Doppler and two-way range and/or Doppler. The one-way

Doppler measurements are extracted onboard the user satellite

from tracking signals originating on the ground, relayed

through a TDRS, and received by the user spacecraft. The

accuracy of the one-way measurements will be degraded by any

errors in the user frequency standatd that is used in extract-

ing the Doppler measurements. The geometry of this measure-

ment is illustrated in Figure 2-1. The two-way data are

extracted on the ground from the round-trip propagation of

the tracking signals; the resulting data are collected and

relayed back to the user spacecraft through the communications

link. The two-way measurement geometry is illustrated in

Figure 2-2. Comparison of Figure 2-1 and 2-2 shows that the
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one-way data is from the forward link of the round-trip mea-

surement which produces the two-way data.

A diagram of the proposed orbit determination concept and
its interaction with other satellite systems is shown in

Figure 2-3 (adapted from Ref. 7). Those areas outlined by
the dashed lines indicate the additional requirements for

the onboard orbit determination. Both one-way and two-way
data types will require additional onboard computer capabil-

ity for the orbit determination. One-way navigation will

require modification of the standard TDRSS transponder to

permit Doppler extraction and signal acquisition.

For both navigation modes, the Payload Operations Control
Center (POCC) transmits the TDRSSephemerides via the TDRSS

to the user spacecraft. For two-way tracking data, the

measurements, along with accurate time tags and frequency
reference provided by the standard clock at White Sands

Tracking Facility (WSTF), are placed in the command

stream and transmitted to the user via TDRSS. In the one-

way navigation mode, the navigation computer uses the TDRSS

ephemeris and the a priori satellite state estimate to pre-

dict the Doppler measurement for signal acquisition. The

two-way data navigation mode can be one for estimation re-

covery after a user spacecraft maneuver, or any event re-

quiring estimation initialization, and then the navigation

mode switched to one-way data. Once measurements are avail-

able, they are passed to the orbit determination module for

estimating the user satellite ephemeris and, for one-way

data, the oscillator frequency bias. Other modeling para-

meters related to the effects of atmospheric drag or to the

frequency standard may also be estimated. The satellite

ephemeris produced by the estimation process is passed to

the general purpose onboard computer for use instead of the

ground-uplinked ephemeris.
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III. ESTIMATORS

Four estimation techniques were selected for study; an ex-

tended Kalman filter (EKF), a sliding batch differential

corrector (SBDC), a consider Kalman filter (CKF) , and a con-

sider extended Kalman filter (CEKF). The EKF was available

in R&D GDTS, and the SBDC, CKF, and CEKF were made available

through temporary modifications to the R&D GTDS software.

These orbit determination techniques were studied to deter-

mine their reliability and accuracy in the presence of meas-

urement errors and data problems associated with TDRSS data.

Figure 3-1 lists the major characteristics of each estimator.

Extended Kalman Filter (EKF)

The R&D GTDS Filter Program (Reference 5) contains an EKF

estimator with a simple process noise covariance matrix

model. It was recognized that the sequential processing

capability of the EKF would be advantageous for onboard

orbit estimation, although the data coverage would be sparse

(at most, a 10-minute pass of data per orbit), not an optimal

configuration for a filter. The operational flow of an EKF

is given in Figure 3-2.

In the EKF, the state, clock, and drag covariance process

noise rates were modeled using the linear model

Q(t k) = Q • (t k - tk_ I)

where Q(t k) =

.o

tk

tk-i

process noise

diagonal matrix of constants that are the

assumed noise variance rates of change for

the solve-for parameter set

measurement time

measurement time of previous observation
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The state covariance is augmented by Q(t k) at each measure-

ment time, t k. In the current study, nonzero process noise
rates of change were used for the velocity, clock drift, and

drag terms.

Sliding Batch Differential Correction (SBDC)

The batch least-squares estimation (DC) program of R&D GTDS,

described in References 4 and 6 was modified, as described

in Reference 2, to sequentially process a series of data

spans through a large data set. The program starts with a

span of data approximately 12 hours, with which it estimates

the satellite position and velocity state, and other para-

meters, as requested. After converging to a solution, a

new data span is created by adding new data and deleting old

data. A new solution is then attempted on this data. In a

typical run selecting 12 hour spans from a file covering 24

hours, five solutions and five separate DC Program runs qre

made.

The SBDC flow is described in Figure 3-3.

Consider Kalman Filter (CKF) and Consider Extended Kalman

Filter (CEKF)

The FILTER Program of R&D GTDS, as described in Reference 5,

was modified to include a consider feature, used in place

of the process noise covariance matrix. The motivation for

this investigation was to compare the CKF and CEKF results

to those of the EKF and the SBDC to see if the consider

feature, which models the estimation error in a more physi-

cally meaningful way, would perform better than the EKF or

SBDC or lead to a better understanding of the estimation

results from the EKF and SBDC.

The KF and EKF can be easily modified to the CKF and CEKF

be setting the relevant gain terms to zero. If the state
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update equation is partitioned into the solve-for (X) and
consider (Z) portions, then the state update, x, is

Hz]

where Hx and Hz are the partial derivatives of the observa-

tion equation with respect to the solve and the consider

parameters, respectively.

The covariance is also partitioned to be

p _____

If the a priori cross terms P xz

zero, the Kalman gain is

K = _x HT
x

and P
zx

+  z Wz+J

are assumed to be

= - K H P
Px x

p =-K H P
xz z z

The propagated estimate to the error in Z, z, will be zero,

since no estimate is made of the Z error. Then the state

update will be

A

x = x + K(y - H x)
x

For the CKF, the processing done until the last data point

is processed, and then the state is updated

A A

X_ = X_ + X_
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If the CKF has not converged, the updated state X_ is

propagated back to the first observation and the process

begins again.

For the CEKF, the state update becomes:

XK = XK + KkYk

which are then the initial conditions for integration to

the next data point.
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IV Evaluation Procedure

Several programs available in R&D GTDS were used in the

evaluation of the orbit determination accuracy. Figure 4-1

illustrates the evaluation procedure by which the ephemeris

of a "truth" model for the user satellite was compared with

the ephemeris produced by the estimator. Deviations between

the two ephemerides provide a measurement of the accuracy

obtained by the estimator for a particular test case. The

simulated data used by the estimator is supplied by the

DATASIM Program, which has the capability to corrupt the

range and delta-range measurements with measurement errors

and random measurement noise.

The time spans for the comparisons for each estimator are

chosen to cover times which correspond to those in which

an operational onboard estimator would be annotating data.

In the case of the CKF, and the SBDC, this is a span cover-

ing at least one orbit, and possibly two, beyond the last

data points. For the EKF and the CEKF, this comparison

time span is one covering an orbit or more well beyond

(that is, several orbits) the initial data. This time span

should be one in which the effects of initialization of the

filter are not noticeable, and the filter has settled to a

steady state or equilibrium condition. Since it is of some

interest to learn how long this settling process takes, two

comparison spans are used, one" at the mid-point and one at

the end of the data.

The analysis procedure used in comparing the ephemerides

involved examining (i) the solve-for parameter report, (2)

the root mean square (rms) and the maximum deviations of the

position and velocity errors, and (3) the radial, along-

track, and cross-track ephemeris comparison plots of the

position and velocity errors for the full estimation time
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span. These statistics were recorded for all cases, along

with pass frequency, numbers of TDRSs observed, and measure-
ment and modeling errors applied.

Test Cases

The Landsat-D and Gamma Ray Observatory, (GRO) spacecraft

were selected as the sample test cases for onboard orbit

estimation. Landsat-D has a near-polar inclination and a

medium altitude. GRO, on the other hand, has a lower alti-

tude and a less inclined orbit. Table 4-1 lists the Land-

sat-D and GRO orbital elements and spacecraft parameters.

The TDRSS satellites were placed in nearly circular station-

ary orbits 130 ° apart with periods of 1436.2 minutes.

Measurement Models for TDRSS Data

For the purpose of this study, three separate data-type cases

were considered for evaluation: one-way Doppler data, two-

way Doppler data, and two-way range and Doppler data. The

Doppler measurement was simulated as a delta-range measure-

ment so that existing R&D GTDS capabilities could be used.

The range and delta-range measurements were simulated using

the pseudo-TDRSS data capabilities in the Data Simulation

(DATASIM) program of R&D GTDS. A discussion of these meas-

urements can be found in Reference i. A set of range and/

or delta-range measurements constitute a pass of data. In

all cases, it was assumed that the user satellite was in

contact with a single TDRS for i0 minutes for each pass of

data. The time between range and delta-range measurements

and the delta-range computation interval were set at i0

seconds, which yields 30 delta-range measurements for every

complete pass Of data. For both measurement types combined,

there are 30 range and 30 delta-range measurements.
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TDRSS Tracking Schedules

The TDRSS observation simulation determines the TDRSS visi-

bility from the user spacecraft by testing to see if the

TDRSS falls within the user antenna and that it is not

occulted by the Earth. The effects of atmospheric refrac-

tion are not included in the observation modeling. With an

antenna modeled as a cone pointing along the radial direction

with a half-angle of i000, the time span of line-of-sight

contact between Landsat-D or GRO and any single TDRS ranges

from 40 to 60 minutes. During the early phases of the feas-

ibility study, several models were run to investigate the

dependence of the prediction accuracy on the time from the

first or last possible contact with a TDRS. It was de-

termined that tracking measurements made consistently at the

beginning or end of a visibility interval (edge-justified

data) yield better estimation accuracy than those centered

in the visibility arc (center-justified data). Since neither

data set represents a realistic case, a more random model

was selected for use in the remainder of the study. Another

variable in the tracking schedule was the length of time

between subsequent passes of data. To study this, estimation

was done with time gaps of one, two, or three user-satellite

revolutions between data passes. For the one revolution gap,

a Landsat-D data set covering a 24-hour time span will have

17 passes of data. For the same time span, a set with a

two revolution gap will con£ain 9 passes of data, and, with

a three revolution gap, 6 passes of data. For any given

pass of data, the user satellite was restricted to tracking

by only one TDRS. However, most models were run with al-

ternating TDRS contacts on subsequent passes of data.

Figure 4-2 shows the TDRS visibility for the GRO satellite,

and the location of the data sets used for the one revo-

lution gap GRO studies.
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Measurement Error Models And Anomalous Data

Each observation in a data set, consists of the observed

quantity, range or delta-range, its time tag, and the TDRS

identification and coordinates at the time of the observa-

tion. The scheduling of the observations and the delta-

range integration time are supplied by the user. The R&D

GTDS DATASIM Program applies biases and random errors to

the measurements. Errors on the TDRS ephemeris are applied

to the TDRS coordinates included in each observational

record. The frequency bias is added to the delta-range

observation and the user clock error is applied to the ob-

servation time tag.

The nominal values for each of these error sources are listed

in Tables 4-2, 4-3 and 4-4, respectively.

To studY the performances of the estimators in the presence

of transitory data problems, data sets were created in which

one or more ten-minute passes of data were given anomalously

large errors. The operation of this data simulation tech-

nique is explained in detail in Reference 2.

The errors may include any or all of the following:

• Larger TDRS ephemeris errors in the along-track(L),

cross-track(C), radial(H) and/or L components

• Larger range and/or delta-range measurement noise

• Larger bias on the range data

• Bias on the delta-range data

These errors are applied to one or more specific passes in

a 24-hour data set. In this way, the effects of transitory

problems which are periodic or create larger random errors

or a bias on the data can be studied.

Dynamic Modeling Errors

Dynamic modeling errors are simulated by a mismatch of the
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spacecraft acceleration and frequency standard that are used
in the data simulation from those used in the estimation.

Physically, these errors arise from the lack of precise

models for the accelerations acting on the spacecraft and
the behavior of onboard clocks. The dynamic modeling errors

affect the accuracy of the propagation of the orbital and
clock state vectors. The dynamic models used in the truth

model, and in the estimators, the EKF, the SBDC, the CKF

and the CEKF, are given in Table 4-5.

Table 4-6 gives the maximum deviation in 24 hours due to

the dynamic modeling differences between the truth and the

estimation models for the SBDC. Figures 4-3 and 4-4 show

the along-track growth of these errors over 12 hours for
Landsat-D and GRO. Similar results for the EKF force model

show a larger error growth•

Baseline Parameters

Table 4-7 lists the parameters that were estimated and those

from which the consider parameters were chosen. Table 4-8

lists the a priori offsets or values, a priori covariances

associated with the estimated parameters, and the measure-

ment standard deviations that were used in the baseline runs.

The clock drift term (frequency bias), b, is estimated in

addition to the orbital state vector when using one-way data.

For the GR0 satellite, the atmospheric drag parameter (pl)

can be either estimated or considered• The values in Table

4-7 for Pl and its a priori covariance are for cases in

which Pl is estimated.

For the CKF and CEKF estimators, the central body term (GM),

and any of the geopotential coefficients can be considered.

For one-way data, the clock drift rate (b) can also be con-

sidered. The atmospheric drag parameter (pl) can be con-

sidered when estimating the GRO orbital state.
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V. Evaluation Results

The four estimation algorithms were studied to determine

their best performance with data with the baseline error

levels. In the case of the EKF, this included tuning the

process noise parameters to give optimal results. For the

CEKF and the CKF, the selection of the considered parameters

and tuning their variances was studied. All baseline runs

and their variations used a tracking schedule of 10 minutes

every N revolutions of the user satellite and alternating

observations of the two TDRSs. Figure 4-2 shows the periods

of visibility of TDRS-E and TDRS-W from GRO for 24 hours

from the time of epoch (October i, 1980). The shaded

areas represent the data spacing for cases with one contact

per revolution. A similar visibility pattern is used for

the Landsat-D satellite.

Some representative results taken from the Landsat-D satel-

lite studies are shown in Table 5-1, and some results when

the user satellite is GRO are shown in Table 5-2. The run

numbers in these tables refer to the run numbers used in

references i, 2, and 3.

The runs are grouped to allow comparison of the performance

of an extended estimation (EKF, CEKF) against a batch

processor (SBDC, CKF). Statistics for an extended estima-

tor are given for two periods, 9-12 hours and 21-24 hours

after the beginning of the data spans. The later period is

to assess the estimator accuracy unaffected by transients

associated with initializing the estimator. For some of

the runs, the differences between the 9-12 hour span and

21-24 hour span evaluations show that the extended estimator

has not reached an equilibrium solution at 12 hours, but

requires a longer time. In the case of the batch (SBDC,

CKF) estimators, the statistics are associated with a
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typical ephemeris prediction that uses an initial state

derived from processing data spanning the previous 12 hours.

Effect of the Baseline Data Errors

The error in the along-track direction for the Landsat-D

B5 EKF run is shown in Figure 5-1. The behavior of these

errors is characteristic of the EKF, in which a large initial

deviation (reaching, in this case, a maximum of 2549m), is

reduced to an acceptable level as the data processing proc-

eeds and the filter achieves an equilibrium solution. For

comparison, the along-track error for the L02 SBDC run is

shown in Figure 5-2. In this case, Figure 5-2a is a plot

of the definitive solution error over the data span, and

5-2b the predictive error after the end of the data. These

errors behave in a manner characteristic of a DC estimator,

in which the definitive solution errors have a mean of zero.

The predictive errors behave as would be expected from the

differences in the truth and estimator force models, as

shown in Figure 4-1.

The additional errors in the modeling from increased drag

on the GRO satellite decrease the accuracy attainable by

the estimators, as can be seen by comparing the Table 5-2

baseline results to those in Table 5-1. The statistics for

the PI2 EKF run as compared to the B5 run show the EKF

requiring more than 12 hours to reach an equilibrium solu-

tion, and producing a little larger rms and maximum devia-

tion after the equilibrium solution is reached.

The CEKF run 200E, whose along-track errors are plotted in

Figure 5-3 is using the J2 harmonic Coefficient as a consider

parameter.
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Effect of Reduced Data Sets

Using less data, delta-range data only (run H3) or a pass

of data every other revolution (runs L5, LI2, II4E) does

not affect the solution accuracy significantly. When the

data is decreased even further, to data only every third

revolution, there is some growth in the error, with the

run D2 statistics as compared to B5 as an example.

The effect of using less data is more pronounced with the

GRO satellite. The CEKF run II3E shows rms and maximum

deviations approximately double those in run 200E. This

CEKF run is using the Earth geoptential constant (GM) as a

consider parameter. Run P24, with along track errors

plotted in Figure 5-4, shows that when the EKF estimator

has a data pass once every three revolutions, or 6 contacts

(360 observations) over 24 hours, approximately 15 hours is

required to reach an equilibrium solution for a drag per-

turbed satellite.

The Effect of TDRS Ephemeris Errors

Runs E4 and LI5 are examples of the effect of larger TDRS

ephemeris errors in the Landsat-D data. It was found that

the estimators perform about as well using only delta-range

data as when both range and delta-range data are used as

long as the weighting on the range data reflects the larger

error in that data type from the TDRSS ephemeris errors.

When the TDRS ephemeris errors were not reflected in the

range measurement noise (that is, the estimator assumed a

more accurate measurement than was available), the estima-

tion accuracy was degraded. Proper use of the range data

assumes a good knowledge of the level of error in the TDRS

ephemeris, a factor which increases the risk of using that

data type.

The SBDC run LI5 also included the effect of a TDRS ephemeris

update 14 hours after the beginning of the Landsat-D data set.
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The first two data spans of the SBDC are data processed with

increasing TDRS ephemeris errors, and, as the SBDC processes
successive 12 hour spans, the level of the total TDRS ephem-

eris error becomes less. This can be seen in Figure 5-5

of the along-track errors in the first and fifth data spans.
The rms of the predicted solution is 202m for the second

span and 139 for the fifth; the maximum deviations are 304m

and 190m, respectively. (The statistics given in Table
5-1 are from the first data span).

The effects of additional L error in the TDRS ephemeris for

the GRO satellite are shown in the runs QI7 of the EEF and

G6 of the SBDC in Table 5-2. The SBDC shows and increasing

effect as the successive spans of data are processed. The

statistics given are from the third data span. At the fifth,
they are 323m rms and 507m maximum deviation. The errors in

the G1 run, by comparison, stay more uniform over the data

arc; the statistics given are for the fifth span of that run.

The SBDC run GI5 includes a TDRS ephemeris update at 14 hours.
The plot of the along-track error in Figure 5-6 is over the

first 12 hours, showing the solution accuracy as the maximum

TDRS ephemeris error is approached.

Effect of 0nboard Clock Errors

Use of one-way data degrades the solution accuracy as com-

pared to the two-way data results. Landsat-D runs M4, L08

and the GRO run R8, show this. One-way data has increased

error due to the user clock errors, especially the frequency

bias and drift, and the larger delta-range measurement noise.

Also, the estimators must now solve for one or two additional

terms with no increase in the amount of data. The EKF re-

quires a larger processing span to achieve an equilibrium

solution than when using two-way data, as can be seen in

Figure 5-7 of EKF run M4. The SBDC L08 run exhibits the type

of errors common to a DC estimator trying to estimate a
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quadratic clock error (linear frequency bias error) with a

linear equation (constant). The plot of the definitive
solution along-track errors, in Figure 5-8, show this effect,

with the errors containing a linear term.

Estimating with one-way GROdata is considerably more

difficult than with one-way Landsat-D data. Figure 5-9

shows the along-track errors for EKF run R8, estimating the

frequency bias for the accurate clock. The effect of the

drag errors, and the necessity for solving for the drag par-
ameter, can be seen by comparing Figure 5-9 with the com-

parable run for Landsat-D, in Figure 5-7.

Replacing the accurate oscillator in the one-way data model
with the NASA standard transponder, whose frequency drift

is 200 times larger, produces much worse results. The errors

in the SBDC grow to hundreds of kilometers when attempting
to model this oscillator as one with a constant frequency
bias. The EKF run NI4 with Landsat-D data, shows that when

both the frequency bias and drift are estimated, the solu-
tions are as accurate as with the two-way data. However,
this should not be construed as demonstrating that the

frequency drift must be estimated for accurate solutions.

It is only a demonstration of the need for correctness in
the estimator modeling of one-way data as the data is sim-
ulated with _e same oscillator as is used in the estimator.

The NASA transponder oscillator produces even worse results
when used with GROdata. Runs comparable to the EKF run with

this data gave solutions accurate only to 1-10 kilometers.
All of the estimators need to estimate the frequency drift

to perform well with GROdata with the transponder oscillator
error.
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Effect of Anomalous Data

Data sets were generated in which one or two passes had
anomalous data errors; large increases in any or all of the

errors sources beyond what is expected by the estimators.

If the estimator can recognize that the data pass is in error
and edit it, it has virtually no effect on the solution

accuracy. If the estimator does not recognize the data pass

as having larger errors, then it can, and does, corrupt the
solution accuracies. Runs 04 and LI7 are two in which the

Landsat-D data with anomalous errors were not all edited.

Plots of the solution accuracies are shown in Figures 5-10
and 5-11, respectively. For run LI7, the bad data occurs
at 4h 45m after the beginning of the data span. The defin-

itive solution from Figure 5-11a is for the first span in
which the data, nearly centered in this span, shows a more

significant effect than Figure 5-11b, where the bad data

are the first points encountered.

The along-track errors in the two runs with anomalous data
in Table 5-2, the T3 EKF run and the GI9 SBDC run, are plotted

in Figures 5-12 and 5-13, respectively. In both cases the
errors are such that the anomalous data are not all edited.

The bad data pass for GI9 has a significant effect on the

second span of the SBDC, as seen in Figure 5-13a, but the

estimator is recovering by the fourth span, as shown in
Figure 5-13b. The statistics given are those for the second

span; for the fourth they are 377m rms and 566m maximum
deviation.

8-20



VI. Conclusions

These studies have been done by modifying an existing satel-

lite-to-satellite tracking system in an attempt to study

relevant data error sources. While it is an analyst's

axiom that no simulation can adequately model the real

world effects, it does allow some conclusions as to the

appropriate procedure for onboard navigation.

• All estimators give solutions using the baseline data

sets to an accuracy of 500m or better, often to better

than 100m.

• Use of the two-way range data with the delta-range

data produces the same results as using the delta-

rang data alone only as long as the TDRS ephemeris

errors are well known and accounted for in the data

weighting. If their effect is underestimated, the

range data will degrade the solution accuracy.

• The model used for the frequency standard should be

examined further to determine appropriate models

for estimation of realistic errors. The solution

accuracy depends strongly on the accuracy of this

estimation when one-way data is used.

• The SBDC estimator needs no tuning for optimal per-

formance with the two-way data.

• The EKF, CEKF, and CKF estimators must be tuned to

the specific circumstances for which they are intended

for optimal performance. With this data type, these

estimators perform best when tuned to respond some-

what slowly to new data.

• The estimator which requires the least processing

from the onboard computer is the EKF. The one which

requires the most is the CKF.
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The EKF and CEKF need between 6-15 hours to reach

an equilibrium solution, depneding on the data type

and frequency. The SBDC and CKF need 2 to 4 itera-

tions to converge to an acceptable solution.
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Table 4-1. Landsat-D and GRO Orbital Elements, Area, and
Mass

PARAMETER

EPOCH

COORDINATE SYSTEM

SEMIMAJOR AXIS (kin)

ECCENTRICITY

INCLINATION (deg)

LONGITUDE OF ASCENDING NODE (deg)

ARGUMENT OF PERIGEE (deg)

MEAN ANOMALY (deg)

PERIOD (mini

AREA (m21

MASS (kg)

LANDSAT-D

OCTOBER 1, 1980

TRUE OF DATE

7086.901

0.001

98.181

354.878

180.0

0.0

98.956

20.0

1700.0

GRO

OCTOBER I, 1980

TRUE OF DATE

6778.140

0.0017

28.0

0.0

0.0

0.0

92.56

20.0

1700.0

0

p,,

f_
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Table 4-2. Data Simulation Measurement Errors

PARAMETER

Random Range Error(m)

Random Delta-Range Error(cm)

Range Measurement Bias(m)

Delta-Range Measurement Bias(cm)

BASELINE STANDARD DEVIATION

ONE-WAY DATA TWO-WAY DATA

i0

+

1

1

7

+The delta-range measurement bias due to the user clock is

= 60,000 + 0.0069t cm for the accurate clock,

= 300,000 + 0.69t cm for the NASA standard transponder,

t measured in seconds from the clock

epoch.
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Table 4-3. Data Simulation TDRS Ephemeris Error Model

PARAMETER

PERIOD OF SINUSOIO 1 (hr)

RADIAL AMPLITUDE (m)

CROSS-TRACK AMPLITUDE (m)

ALONG-TRACK AMPLITUDE (m)

ALONG-TRACK GROWTH RATE (m/day)

VALUE

24

35

35

8O

25O

1SINUSOIDAL PERIOD FOR RADIAL. CROSS-TRACK. AND ALONG-TRACK

TDRS EPHEMERIS ERRORS.

O

Table 4-4. Data Simulation Quadratic User-Clock

Error Model

COEFFICIENT

USER-CLOCK BIAS (see)

USER-CLOCK DRIFT (seclmc)

USER-CLOCK DRIFT RATE (=eclseclday)

ONE-WAY DATA

NASA
STAN DAR D

TRANSPON DER

0

1 x 10 .6

2x 10 "7

ACCURATE
ONBOARD CLOCK

0

2x I0 "7

2x 10 .9

TWO-WAY DATA

PERFECT CLOCK

O

o

P_
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Table 4-6. Error Growth in Ephemeris over 12 Hours

SATELLITE

LANDSAT-D

GRO

MAX. POS. DIFFERENCE (M)

AH

45.

367.

AC

94.

103.

AL

1232.

26573.

AR

1235.

26575.

Table 4-7. Estimator Solve-for and Consider Parameters

PARAMETERS ONE-WAY DATA TWO-WAY DATA

x, y, z, _, @, _

b

b

EKF and SBDC

CKF and CEKF

Pl (GRO only)

EKF and SBDC

CKF and CEKF

GM CKF and CEKF

geopotential harmonic

coefficients

CKF and CEKF

solve

solve

ignore/solve

ignore/solve/

consider

solve

solve/

consider

consider

consider

solve

B

solve

solve/

consider

consider

consider
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Table 4-8. A Priori Values and Measur_t Standard Deviations

PARAMETER

A PRIORISTATEOFFSETS

X,Y,Z

X,Y,Z

A PRIORIUSERCIfX_ PARAMETERS

b (BIAS)

]_ (DRIFt)

NASA STANDARD TRANSPO_ER

ACCURATE ONBCIARD C[f)CK

b (DRIF_ RATE)

A PRIORI P i

A PRIORI OOVARIANCES(EKF, CKF, & CEKD

X,Y,Z

X,Y,Z,

b

Pl (GRO ONLY)

A PRIORI OgVAR/ANCES _BDC)

X,Y,Z

X,Y,Z,

b

P 1 (G_RO ONLY)

STANDARD DEVIATION OF MEAS_

ERROR

RANGE

DELTA-RANGE

BASELINE INPUT VALUE

ONE-_Y DATA

i00 m

30 cm/sec

0 sec

i. ixl0-6sec/sec

2.2xl0-7sec/sec

0 sec/sec/day

0.0

0.i 2

i. 0 m2/sec 2

ixlO-6sec/sec

1.0

O0

O0

O0

O0

lO cm

qWO-_ThYDATA

i00 m

30 c_n/sec

D

m

m

0.0

2
0.1km

i.0 m2/see 2

1.0

B

40 m

icon
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[_ TORS

CLOCK
FREQUENCY

CLOCK
FREQUENCy

WHITE
SANDS

GROUND
STATION

Figure 2-1. One-Way Tracking Signal Geometry

"T'- lUn@

CLOCK
FREQUENCY

WHITE

SANDS
GROUND
STATION

Figure 2-2. Two-way Tracking Signal Geometry
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EKF

state update at each observation

simple process noise covariance model

O = Q (t i - ti_ I)

tunable parameters

- a priori covariance

- Q matrix

SBDC

State update at epoch

Data in 12-hour spans, new solution generated when

each pass of data is collected

Initial state solution from previous data span propagated

to new epoch

No a priori covariance

CKF, CEKF

• State update at epoch (CKF) or each observation (CEKF)

• Consider covariance used instead of process noise

• Tunable parameters

- a priori covariance

- consider parameter selection and variance

Figure 3-1. Estimator Characteristics
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given the initial state, Xk_ 1
and an observation Yk

/k

= Xk_l, the covariance, Pk-l,

i. Propagate to t k to obtain Xk

state: Xk= F(X, t k) with Xk_las the initial conditions

state _ransition matrix:

_(t, tk_ I) = A(t) _(t,tk_ I) with _(tk_ I, tk_ I) = I

the initial conditions,

and where A(t) =I_ x evaluated at X = Xk_ 1

2. Propagate the covariance to t k

-- = _T
Pk _(tk'tk-l) Pk-i (tk'tk-l) + QX(tk - tk-l)

where Q is the state process noise covariance

rate.

3. Compute observation (G_), residual (yk) , and observation

partial derivatives (H_)

G k = G(Xk,t k)

Yk = Yk - Gk

= _G evaluated at X = X kHk 3X
A

4. Compute gain (K k) , update covariance (Pk) , and state (X k)

: + w ere o servat o 
weight

A

X k = X k + KkY k

5. If there is more data, return to step i.

Figure 3-2. EKF Operational Flow
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Input: state X(t o)

i.

•

.

•

Select observation span, Yk to YZ, and new epoch,

t k. Propagate state to the new epoch, tk.

Integrate state and state transition matrix to each

observation state: X = F(X,t) with X(t i) as the

initial conditions

state transition:
(t,t i)=A(t) _(t,t i)

with ¢(ti,ti)=I as

the initial conditions

Compute observation, residual, and observation partials

G i = G(Xi,tk) ,

Yi = Yi - Gi

H i = H i _(ti,tk), where H i is the observation partials
at t.

1

When all observations are processed, compute update at

epoch, tk,
A

x k = (HTRH) -1 HTRy, where R is the observation weighting matrix

A A

Xk = X k + x k

. Determine if the SBDC has converged over this span. If

not, repeat steps 2 to 4.

If it has, go to step 1 and select the next data span.

Figure 3-3_ SBDC Flow
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ABSTRACT

Analyses have been conducted at the Goddard Space F.light Center

(GSF-C) to improve the accuracy of Seasat ephemeris computations so that the

altimeter data can be used for determinations of global ocean topography. After

improvements to models for the earth's gravity field, atmospheric drag, solar

radiation pressure, and the tracking station coordinates, an r.m.s, radial

ephemeris accuracy of 1.5 meters has been achieved. Most of this error is still

attributed to the model of the earth's gravity field. Preliminary gravity model

solutions incorporating GEOS-3 altimeter data have provided a significant

improvement in the accuracy of Seasat ephemeris computations.

The long continuous tracks of Seasat altimeter data intersect one

another several thousand times in a few days. Differencing the sea surface

heights computed from the altimeter range measurements at these crossover

points has provided important insight into the nature of the ephemeris error.

The ephemeris error is long wavelength in nature so that over tracks of a few

thousand kilometers, the radial error can be represented by a linear trend.

Comparisons of the Seasat ephemerides computed at the GSF-C with

those independently computed at the Naval Surface Weapons Center (NSWC)

have provided important information on the source and magnitude of the

ephemeris errors. In addition to providing insight into gravity model errors the

comparisons also have revealed the existence of an apparent 4 meter difference

between GSF.C and NSWC Z components of tracking station coordinates.

Additional analyses of Seasat and GEOS-3 altimeter data, in combination

with laser and Unified S-Band tracking data, are ultimately expected to produce

an r.m.s, radial orbital accuracy of about S0 cm.
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Int roduct ion

The altimeter experiment on Seasat produced a global set of data with

a precision better than I0 cm. The use of these data for sea surface topography

determinations has placed very stringent requirements on the ephemeris

determination. The objectives of the precision orbit determination work at

CSFC have been: to evaluate the accuracy with which the Seasat orbit can be

computed, to identify the sources of error which limit the satellite ephemeris

accuracy, and to improve the ephemeris accuracy by developing improved models

for the orbit error sources.

Initial orbit computations with existing geodetic data, gravity, atmos-

pheric drag, and solar radiation pressure models resulted in radial ephemeris

errors of several meters. These errors occur because the altitude of 800 kin.

and the very complex nature of the spacecraft structure make the task of

accurately modeling the forces on Seasat difficult. Analyses of the orbit

perturbations due to the earth's gravity field indicated that significant radial

perturbations (10-30 cm.) were caused by spherical harmonic coefficients even

out to degree and order 36. The specularly reflecting spherical model for the

spacecraft which is typically used in the drag and solar radiation pressure

computations of orbit determination programs is no longer adequate. The choice

of atmospheric models is quite important, particularly in longer arcs as is

discussed in Schutz and Tapley [I].

A series of improvements were made to the gravity model and tracking

station coordinates, with the most recent model based upon an analysis of the

Seasat laser and Unified S-Bond (USB) data and the GEOS-3 altimeter data.

Improvements in models and techniques to account for drag and solar radiation

pressure also have been implemented. Using these model improvements and the

set of Seasat laser and USB data, orbital solutions have been computed at GSFC

for the extent of the Seasat mission.
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The following sections present a summary of lhese developmenls. The

primory measures of orbit accuracy we have relied upon are the r.m.s, of fit,

the intercomporison of ephemerides, and the use of altimeter seo surfoce height

discrepancies at the intersections of the ground tracks. The GSFC ephemerides

hove been compored with those computed independently at IxlSWC using Doppler

data [2]. These comparisons hove provided o direct means of assessing the

noture and mognitude of the grovity model error and also have revealed

significant coordinate system differences.
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Loser and Unified S-Band Orbits

The Seosat orbits computed by the Geodynamics Branch at GSFC were

based upon a combination of laser and USB tracking data. These two data types

were complementary in the sense that the laser data provided high accuracy

(i.e., 10 cm. for the GSFC lasers and 50 cm. for the Smithsonian Astrophysical

Observatory (SAO) lasers) and absolute scale for the orbit computations while

the USB average range rate data provided global coverage both geographically

and in time. The USB data were found to be particularly valuable in the

development of the gravity model for Seasat. The amount of tracking data

provided by these systems averaged S posses per day for the laser network and

18 passes per day for the USB network. This rather sparse data set necessitated

the use of orbital arc lengths of several days.

The GSFC C,eodyn computer program [3,4] was used for the orbit

computations. This program uses numerical techniques to integrate the

equations of motion and Bayesian least squares adjustment techniques for the

improvement of the orbital parameters. The earth's gravity field, the luni-solar

direct gravitational perturbations, and the solid earth tidal perturbations

including the geometric tracking station displacements due to the tidal effects

have been modeled. The JPL planetary ephemeris DE-96 was adopted for these

computations along with the BIH polar motion and UTI data. The non-

conservative forces of solar radiation pressure and drag have also been modeled.

The Jacchia 1971 model atmosphere [5] implemented in Geodyn was selected for

this effort.

The spacecraft model currently employed in the Geodyn program for

Seosat uses the conventional specuIorly reflecting sphere. In the computations

described here a radiation pressure coefficient and o number of drag coefficients

were adjusted for each orbital arc in order to best fit these complex

perturbations in on average sense with this spherical model. A more accurate

variable-area model of the complex structure of the Seosot spacecraft is being

developed for implementation in the drag and solar radiation pressure com-

putations.
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The major source of error in the initial SEASAT-I orbit computations

was the modeling of the earth's gravitational field. Orbit computations using

the GSFCGEMgravity models available at the time of launch indicated that the

most accurate orbits were obtained with the GEM-lOB model [6] which is

complete to degree and order 36 in the spherical harmonic coefficients. The
observation residuals and other orbit accuracy assessments indicated that

improved geopotential coefficients were required. An initial gravity model
designatedPGS-SI[7] was computed by incorporating Seasat laser data into the

GEM-c) gravity model normal equations[8]which are based solely upon satellite

observational data. Although this PGS-SI model provided an improvement in

orbit accuracy over the GEM-lOB model, radial orbit errors of several meters

still existed due to the sparsity and poor distribution of the laser data for the

adjustment of a Seasat gravity model. Subsequent analyses of the USB average

range-rate data permitted the inclusion of these data into another solution which

was designated PGS-S2 [7]. This latter model is complete to degree and order

30, with selected coefficients to degree 36. An example of the degree of

improvement of the PGS-S2 model versus previously available models is

presented in Table I from Lerch and Marsh [7]. This table presents orbit overlap

differences for a set of five two day arcs when the GEM 9, GEM IOB and

PGS-S2 gravity models were used. The reduction from 2.6 meters for the GEM

9 model to 0.7 meters for the PGS-S2 model in the radial r.m.s, difference

illustrates almost o factor of four improvement in the orbit consistency.

A detailed evaluation of the PGS-S2 model indicated that orbital height

errors of several meters due to gravity field mis-modeling were still present,

particularly in the mid-Pacific ocean area [9]. The lack of high accuracy

tracking data over the ocean areas is believed to be the limiting factor in the

development of the gravity model for Seasat. Previous GSFC experience in

the development of the GEM 10B gravity model indicated that the addition

of altimeter data provided an important contribution, particularly over the

remote ocean areas where surface gravity data and tracking data were sparse.

Based upon this experience, the same set of GEOS-3 altimeter data which was

used in the computation of the GEM 10B model was combined with the data used

in computing the PGS-S2 gravity model. The resulting model, designated

PGS-S3 [10], is complete to degree and order 36. This model has been used for
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most of the orbit computations described in this paper and hasbeen usedfor the

orbits contained on the final set of the Seasataltimeter data released by the Jet

Propulsion Laboratory (JPL). Coordinates for the laser and USB stations were

derived simultaneously with the gravity models. The PGS-S3gravity coefficient
and station coordinate values are contained in the November 1979 Seasat

Altimeter/Orbit Determination Team Workshop Report [10].

Table 2 presents a comparison of the orbital r.m.s, fits obtained when

the PGS-S2 and PGS-S3 models were used for 6 day orbit computations. The

significant point in this table is the indication of an improved global orbit by the

reduction in the USB r.m.s, of fit from 1.40 cm/s to 1.25 cm/s. The USB data

provides a better measure of orbit accuracy because of the more global

distribution. The minor changes in the laser fits are not considered meaningful

measures of orbit accuracy, even though a reduction was noted for the first arc,

since most of the laser data were recorded in regions of the world where the

gravity model errors are minimal. The tracking data residuals only provide a

measure of orbit accuracy where tracking data exist.

Table 3 presents a summary of the r.m.s, radial, crosstrack and

alongtrack position differences between three day arcs computed using the

PGS-S2 and PGS-S3 gravity models. These values represent the r.m.s, of the

differences computed every 5 minutes around the orbits. The r.m.s, radial

position difference is 74 cm; however, maximum excursions as large as 3 meters

are noted. These maximum differences primarily occur in the remote ocean

regions where tracking data are not available. Along track differences in excess

of 10 meters are also noted in this comparison.

Improving the accuracy of the earth's gravity model for Seasat is quite

difficult. Even with PGS-S3, gravity model error is still the largest error source

for Seasat. Sensitivity analyses [ 7 ] have shown that a large number of

coefficients above degree 30 produce radial perturbations greater than 10 cm.

Further gravity model adjustments using the Seasat altimeter data in conjunction

with the PGS-S3 data set are in progress and should provide a significant

reduction in orbit errors.
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Atmospheric drag perturbations on the Seasat orbit also present a

difficult modeling problem. Solar activity during the Seasatmission was quite

high and large variations have been noted in the day to day flux values used in
modeling drag. The adjustment of atmospheric drag parameters (CD, C_D) was

found to be adequatefor arc lengthsup to three days in length. For longer arcs,

tests indicated that it was necessary to employ a technique of adjusting multiple

drag coefficients in each orbital arc. This technique permitted the extension of

the orbital arc lengths so that dynamics could be used to compensate for the

sparsity of tracking data and the preponderance of data in the northern

hemisphere. Using this technique orbital arcs as long as 17 days were fitted

with only a minor degradation in accuracy noted. Table 4 illustrates this fact

for arc lengths of three, six, twelve and seventeen days. The PGS-S2 gravity

model was used in this study. The r.m.s, fits for the S-Band data remained

essentially the same in the 6 and 12 day arcs as in the 3 day arc. The laser

r.m.s, fit increased by about 30 cm. This is attributed to the fact that most

of the laser data is from North America and Arequipa, Peru and the three day

orbit was distorted to fit these regions at the expense of poorer accuracy in

other unobserved areas. The increased dynamical strength of the longer arcs is

believed to have provided a better distribution of the orbit errors and thus

provided a more accurate global solution with less dependence upon the actual

times and locations of the tracking data. Even the 17 day arc showed only a

slight degradation in the r.m.s, fit.

Table S presents a comparison of a series of 3 day ephemerides with a

12 day ephemeris covering the same time span. The r.m.s, radial differences of

the orbits range from 0.4 meters to I meter. This comparison does not

represent an absolute measure of orbit accuracy since both orbits were computed

with the same gravity model, however, there appears to be no radial accuracy

loss in the longer arc. The availability of such long dynamically consistent orbits

is believed to be quite advantageous for the interpretation of the altimeter data.

Additional tests of the accuracy of the 3 day arcs versus the 12 day arc were

carried out through the altimeter derived sea surface height discrepancies at

ground track intersections during the 12 day period. These tests indicated that

the 12 day arc was everywhere equal to the 3 day arcs in accuracy. In the
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more remote ocean areas such as the mid-Pacific the 12 day arc was more

accurate, again reflecting the increased dynamical strength of the longer arc.

After further analyses, six day arcs with the adjustment of daily C D values were

selected as optimum for Seasat with the present level of force model error.

For the Seasat ephemerides distributed with the altimeter data, an orbit

fit span of six days was employed where feasible. Table 6 presents a summary

of the laser range and USB range rate r.m.s., fits for these orbits which cover

most of the mission. The overall laser range r.m.s, value is I.I meters and the

overall USB range rate r.m.s, value is 1.4 cm/s. The variation in the laser r.m.s.

values from arc to arc is primarily due to the difference in the precision of the

laser data available in each arc. The SAO data has a larger uncertainty ( SO cm.)

than the GSFC data ( 10 cm.) and the relative proportions of SAO and GSFC

data vary from arc to arc.

Ephemeris Evaluation

The observational data r.m.s, fits and the internal orbit consistency

evaluations discussed earlier are necessary but not sufficient tests of the global

Seasat orbit accuracy. Other comparisons are available which provide a more

direct measure of the ephemeris accuracy, specifically, by using the altimeter

data and by comparison of ephemerides produced by other independent

invest igators.

Use of the altimeter data at orbit ground track intersections provides a

means of evaluating the radial ephemeris error over the open ocean areas. At

the crossing I_oints, the constant part of the ocean surface height above the

reference ellipsoid, the geopotential contribution, is the same on both tracks.

Thus the sea surface height differences will reflect unmodeled changes in time

dependent ocean topography, orbit modeling errors, and time tag biases or height

bias changes in the altimeter data. Investigations of these crossover differences

(defined as the sea surface height corresponding to the ascending pass minus the
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sea surface height on the descending pass at the intersection of the ground

tracks) are particularly meaningful in the case of Seasat since several thousand

globally distributed crossover points are established in just a few days. Except

for tidal errors, which may be of order 50 cm. in local areas, one would

generally expect oceanographic topography variations to be small over time

periods of o few days, so that the primary contribution to the crossover

differences will be radial orbit errors. Crossover differences thus provide a

powerful test of radial orbit accuracy. However, it is should be noted that even

this test is not absolute, as orbit modeling errors are known to produce

correlated ephemeris errors at the crossover point.

Earlier investigations had revealed the existence of a substantial time

tag error associated with the altimeter observations [9]. A time tag error will

propagate directly into a height error according to the rate of change of the sea

surface height. Because the height rate has a different sign on an ascending

pass than on a descending pass, the sea surface height discrepancies at ground

track intersections provide a sensitive measure of the time tag error. The

detailed formulation for deriving a time tag correction from the crossover sea

height differences was presented in [9]. Using this approach, several solutions

were computed for the timing bias using the PGS-S2 and PCS-S3 gravity model

and a variety of 3 day, 6 day and 12 day orbits covering the period July 28 to

August 8, 1978. The results of this investigation are presented in Table 7.

The initial solution was based upon four three day orbits covering the 12

day time period. The orbits were computed using the USB and laser tracking

data and the PGS-S2 gravity model and station coordinates. This solution, based

upon almost 8500 crossover points, resulted in a value of -76.4 ms. for the

timing bias. Crossover differences larger than 8 meters were eliminated from

the solution. A single ephemeris coverinq the 12 day time period which was

previously described was also used to compute the time bias. This resulted in

a change of only I ms. from the previous solution. The timing bias was next

estimated using two 6 day arcs based upon the PCS-S3 gravity model and the

daily drag parameters. This solution was identical to the 12 day ephemeris
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solution. Finally, a time bias was calculated based upon the NSWC ephemeris

for this time period. This solution provided a significantly different value of

-64.2 ms. The accuracy of the solutions based upon the GSFC orbits are

believed to be better than S ms. The cause for the large GSFC/NSWC

discrepancy is not known. A possible cause may be the differences in reference

coordinate systems or gravity models used at NSWC and GSFC which are

discussed later. A subsequent analysis of the altimeter instrument internal time

delays provided a time tag correction of -79.38 ms. as part of the Seasat

post-launch calibration effort. This hardware analysis is therefore corroborated

at the S ms. level by these orbital analyses at (3SFC andby similar independent

orbital analyses at the University of Texas [I,9 ].

Regional solutions for the time bias based upon the two CSFC gravity

models differed by several ms.; however, the regional differences appear to have

been averaged out in the global solution. These regional variations primarily

reflect the variations in Seasat ephemeris accuracy with respect to geographic

area. In order to illustrate in detail these variations, we have divided the area

of altimeter coverage into 24 blocks. The two six day orbits using the PCS-S3

gravity model and with CR and daily C O coefficients adjusted formed the basis

for this investigation. Ocean tides were modeled using the Estes (1977)

model [ II ] as provided on the preliminary set of altimeter data distributed by

JPL. The time tags on the altimeter data were modified to account for the

-79.38 ms. bias.
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Figure I presents o summary of the crossover difference statistics in
each of the geographicareas. The mean and the r.m.s, about the mean for the

crossover differences in each of the 24 blocks is shown in the figure. The
overall r.m.s, crossoverdifference was 1.64meters. Crossoverdifferences in the

N. Atlantic and N.E. Pacific are approximately I meter whereas those in the
Central Pacific and in the South Atlantic are approximately 2 meters. This is

attributed to the fact that the tracking data are sparseand gravity model errors

are larger in the latter areas. Also in some areas, e.g., the central Pacific

block, a large mean difference exists (226 cm.), although the r.m.s, about the
mean is muchsmaller (151 cm.). Thus, even though the computed sea surface

heights on the ascending passes are systematically different from those

corresponding to the descending passes in that area, each set of passes
(ascendingor descending) is quite consistent. As shown in the simulation by

Anderle andHoskins[12], correlation of gravity model errors producesthis type
of signature and we feel this is the cause. Certain other patterns are noted in

the crossoverdifferences. For example, crossover differences are small in the
calibration block off the east coast of the U.S.and the blocks south of Australia

and New Zealand.A similar pattern is noted between the block immediately east

of Japanwhere large crossover differences are observedand the block between

South Africa and Brazil. This phenomenonis obviously related to the periodic
nature of the orbit errors which is discussed later.
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A similar crossover analysis was performed for the altimeter data

recorded in regions of the northern hemisphere during the 1978 September/

October 3 day repeat ground track orbit. These crossover differences exhibited

the same regional accuracy trends noted in the previous analysis.

The collinear ground track data recorded during the last month of the

Seasat mission provide an additional means of evaluating the nature of the

ephemeris errors. Figure 2 presents a typical plot of the differences between

the sea surface height as computed from the Seasot altimeter data and the

GSFC S' gravimetric geoid [13]for a ground track in the N.W. Atlantic. These

profiles, which are approximately 2000 kin. in extent, show very good

repeatibility with little evidence of relative tilts. The major differences

between the profiles ore characterized by a different constant bias associated

with each pass and short wavelength dynamic topography variations. The

different biases, which appear to vary over a range of 1.25 meters with respect

to their common mean_ ore attributed to ephemeris error. The short wavelength

dynamic topography variations in the N.W. Atlantic as observed in these Seosat

altimeter data hove been discussed by Cheney and Marsh [ 14].

Still another means of assessing the Seasat ephemeris error is through

the comparison of independently computed orbits. The NSWC ephemerides have

been independently computed using entirely different data (Doppler vs. laser and

USB), force models, computer programs and data analysis procedures. In

contrast to the orbital arc lengths of several days used at C,SFC, arc lengths of

two revolutions were used at the NSWC. This was possible because of the large

amount of globally distributed Doppler tracking data available (10-2S passes per

arc). Because of this, the respective ephemeris differences provide a meaningful

measure of the magnitude of Seasat radial orbit errors. The NSWC ephemeris

used here is the one provided with the final Seasat altimeter data - the NSWC

smoothed ephemeris. This ephemeris was constructed from overlapping two

revolution Doppler orbits using a numerical interpolation procedure to generate

a continuous smoothed ephemeris. The details of this smoothing procedure are

explained by Malyevac and Colquitt elsewhere in this issue [2 ]. Because the

NSWC ephemeris was based on independently computed two revolution orbits, it

is not likely to contain long period force model errors.
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Table 8 presents a comparison of ephemerides for two six day GSFC arcs

with the NSWC smoothed ephemeris. The GSFC orbits were computed first with

the PGS-S2 gravity model and then with the more recent PGS-S3 model. A solar

radiation pressure coefficient and daily drag parameters were adjusted in these

six day orbits. The r.m.s, radial position difference about the mean was 2.2

meters for the PGS-S2 orbits and was reduced to 2.1 meters with the PGS-S3

orbits. Comparisons were also made between the remaining six day PGS-S3

ephemerides included with the final set of Seasat data and the NSWC ephemeris.

The results were nearly identical to those presented in Table 8. A GSFC 12 day

arc computed with the PGS-S2 gravity models was also compared with the NSWC

smoothed ephemeris. The differences for the 12 day arc were virtually the same

as for these two six day arcs. This is consistent with the results presented

earlier in Table S. These comparisons indicate that, with the force models

presently being used for Seasat, orbit arc lengths as long as 12 days do not

exhibit degradation due to force model error.

Inspection of the NSWC/GSFC ephemeris differences indicated that the

satellite ephemeris position Z values were systematically different witi_ an

offset of about 3 meters. In addition, a comparison of the GSFC tracking

station coordinates with the NSWC Doppler station coordinates at nearby

stations through the use of survey data conducted by Hothem [IS]indicated that

a systematic difference of about S meters existed in the Z station coordinate

values. That is, ZGSFC : ZNSWC + S meters. Comparisons of a global set of

Doppler derived tracking station coordinates by Grappo and Huber [16] with the

GEM 10 geoid [8] have also indicated the presence of a similar S meters

systematic difference in the Z coordinates of the Doppler stations.
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To investigate the relationship between the station coordinate Z

differences and the ephemerisZ differences, an experiment was conducted using

the C,SFC 12day orbit. The C,SFC Z componentsof the station coordinates were

modified by subtracting S meters and an orbit was computed with these modified

values. The r.m.s.'s of fit for the laser and USB data in the modified orbit were

only slightly larger than the values obtained for the nominal orbit. This

ephemeris was in turn compared with the nominal ephemeris. The ephemeris Z

values were systematically different by about 4 meters. Thus the Z station

coordinate shift propagates significantly into the orbital differences. Since the

mean ephemeris Z difference in the CSFC orbit experiment is about a meter

larger than that indicated in the CSFC/NSWC comparison it appears that the S

meter station coordinate Z shift used in the CSFC orbit experiment may be

slightly too large for this specific set of Seasat tracking station coordinates.

The r.m.s height difference between this Z shifted case and the nominal

ephemeris was 1.92 meters while the r.m.s, height difference between the GSFC

and NSWC orbits was 2.1b, meters. This experiment suggests that at least half

of the GSFC/NSWC radial orbit differences can be accounted for by the station

coordinate reference system differences. These analyses cannot establish

whether the Z error is in the GSFC system or in the NSWC system or partially

in both.
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This 5 meter difference in the Z coordinote values could be due to an

error in the GEM-10 geoid, on error in the Doppler or GSFCstation coordinates,
or o combination of errors. An error in the odd zonal coefficients of the

GEM-IO model would also produce such on effect. King-Hale et al. rl7] have

computed an independent set of odd zonal coefficients based upon orbital arcs

several hundred days in length. The geoid computed from these odd zonal

coefficients agrees generally better then a meter with the GSFC GEM-10B

model and a recent SAO model. Schaab and Groten rl8] hove compared the

origins of the GSFC, SAO, Centre National D'Etudes Spatiales (CNES) and Ohio

State University (OSU) coordinate systems through geoid data obtained from

their respective spherical harmonic coefficient models for the earth's gravity

field. This comparison showed that the origins typically agreed to better than

a meter except for the OSU system where the Z origin differed by 2 meters.

This large difference was attributed to the fact that the OSU model was based

purely on surface gravity data. Thus it seems likely that most of the Z

coordinate discrepancy is due to the NSWC gravity model or tracking station

coordinates.

In addition to the reference coordinate system difficulty, there are two

other factors which may produce differences in the GSFC/NSWC Seasat

ephemeris computations: force model differences and the distribution, amount,

and quality of the tracking data. In an attempt to provide more insight into the

effect of the Z coordinate system differences and to isolate these two latter

factors, an additional test was devised. The NSWC ephemeris data was treated

as observational data for the Geodyn program and a solution was computed

adjusting the orbital state, resonance coefficients, GM, and coefficients for drag

and solar radiation pressure. The NSWC ephemeris was converted to the

Cartesian true of date inertial system ("PCE" data format in Geodyn) for this

purpose. Since the NSWC ephemeris data was continuous around the orbit

(sampled every 5 minutes), and since the smoothed 2-rev NSWC orbits should be

relatively free of long periodic force model errors, the objective of the test was

to see if the remaining GSFC/NSWC orbit differences were primarily due to

errors in the force models or the uneven distribution of the laser and USB

tracking data. In this test it is believed that the Z coordinate system

differences were accommodated in the adjustment process; that is, the fitted

Geodyn PCE orbit conformed to the NSWC geodetic system.
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The resulting Geodyn PCE orbit was compared with the GSFC PGS-S3

orbit: The radial r.m.s, difference was !.$8 meters, which compares reasonably

well with the 1.92 meters obtained in the previous analyses where the station Z

components were perturbed by the S meters. To further assess this comparison,

the spectra of the respective radial orbit differences associated with each of

these two analyses were intercompared. The spectral analyses were performed

with a Fast Fourier Transform package, sampling the radial orbit differences

once a minute for the 12 day span. Use of a 12 day span results in a spectral

frequency interval of .0833 cycles/day. The amplitude spectrum of the radial

orbit differences of the PCE orbit vs. the GSFC PGS-S3 orbit shown in Figure

3a has a simple spectral behaviour, with just two detectable peaks. The dominant

amplitude is 201 cm. at the once per revolution orbit frequency of 14.3

cycles/day. The other detectable peak amounts to 34 cm. at o frequency of 14.0

cycles�day. This latter peak is due to the adjustment of the resonant

coefficients in the PCE orbit determination run, and hence slightly different

amplitudes for the long period gravitational terms of order 14 were used.

The amplitude spectrum shown in Figure 3b for the radial orbit

differences due to the 5 meter station coordinate Z shift has a single peak of

250 cm. amplitude at Ib,.3 cycles/day. It is remarkably similar to the Geodyn

PCE/GSFC PCS-S3 spectrum, except that it is 2596 larger at the once/ray peak.

The phase spectra corresponding to these amplitude spectra are virtually

identical outside the area of resonance effects. The similarity of these spectra

leads us to postulate that all of the effect related to the once/rev peak is due

to the apparent station Z shift. Assuming this and recalling the phase agreement

noted above, the theoretical spectrum due to the station Z shift may be linearly

scaled by a factor of 8096 (which reduces it to LI meters) and removed from the

spectrum of the radial differences between the PCE orbit and the GSFC PGS-S3

orbit. This computation is consistent with assuming that the station Z shift

effect propagates linearly into the orbit. The resulting adjusted spectrum has

only a single peak above o centimeter in amplitude and that is an 11.3 cm.

amplitude at the Ib,.O cycles/day frequency mentioned previously. Again, this

last feature is an artifact of having adjusted resonant coefficients.
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The results of this comparison strongly indicate that the differences

between the GSFC PGS-S3 orbit and the Geodyn PCE orbit are explained by the

two factors of coordinate system differences and resonant coefficient adjust-

ment. The 4 meter effect we have determined is in good agreement with the

S meter station coordinate differences indicated by Hothem [IS] and by Grappo

and Huber [16]. It must be kept in mind that the origin of this apparent

coordinate system error has not been resolved. Nevertheless, the recovered

orbit ephemeris difference has the identical signature to an overall Z coordinate

error. A further conclusion is that errors contributed by the GSFC laser and

USB tracking data appear to be quite small, as only the GSFC PGS-S3 orbit used

these data.

The Geodyn PCE ephemeris derived above was in turn compared with the

NSWC orbit. The r.m.s, radial orbit difference was 1.47 meters with maximum

differences as large as 6 meters noted. Recalling that the above analyses

indicated that coordinate system differences produced an r.m.s, radial difference

of 1.58 meters, the r.m.s, of 1.47 m. is consistent with the overall r.m.s.

NSWC/GSFC orbit differences of 2.14 m., i.e., (I.582 + 1.472)=2.142. This 1.47

meters is a good measure of the agreement between these independent

investigations after taking into account the differences in coordinate system

definition.

An analysis of the amplitude spectrum, Figure 4, of the radial

differences between the Geodyn PCE orbit and the NSWC orbit indicates the

presence of many frequencies. A comparison of the unique orbit referenced

frequencies due to the geopotential with this amplitude spectrum demonstrates

that most of the terms are at these frequencies and hence are probably

gravitational in origin. As is shown by Kaula [19], the frequencies due to the

geopotential are given by

f : (f-2p+q) ((_+/_) - q_,+m (_- _g)

where _ and m are the degree _ and order m of a particular gravitational term;

p and q are the indices of sub-harmonics which arise due to the expression of

the potential in Kepler elements; _ is the perigee rate, which for Seasat is small;

mean anomaly rate; ._is the node rate; and 0g is the rotation rate ofis the
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the earth. Because the orbit of Seasat is nearly circular, and the amplitudes of
I_1

the perturbations drop off as e1_1, only perturbations where /q/ <_ i can be

expected to produce much of an effect on the Seasat orbit. The fact that the

perigee rate on Seasat is small means that in our spectral analysis, the q_ fine

structure cannot be resolved. Thus the basic orbit frequencies found in the

Seasat NSWC/GSFC orbit differences are Characterized by the basic period of

the orbit, _+/_; by the node rate and rotation rate of the earth, .Q- _g; and

by the two integers l-2p+q and m. The fundamental /_+_ orbit frequency

for Seasat is the 14.3 cycles/day; the "daily" frequency is very close to I cycle

per day (.997).

For the most part the frequencies indicated in the spectral analysis

correspond to the orbit referenced frequency terms with (l-2p+q) =1 and order

m ranging up to about 16. There are also m daily terms (L-2p+q=0) indicated.

Figure 4 has been annotated to indicate the class of geopotential terms which

are possibly associated with the significant amplitudes. All of the terms above

8 cm. amplitude have been identified as corresponding to these gravitationally

implied frequencies. The largest amplitude is associated with geopotential terms

of order two which have a frequency of 12.32 cycles/day and an amplitude of

74 cm. An amplitude of 38 cm. corresponds to the fourth order terms at the

frequency of 10.32 cycles/day. Note that for example 43rd order terms are not

necessarily present in either the NSWC or GSFC gravity models, but the

frequency of their effects is very close to some of the determined frequencies

in the spectral analyses. While some of the features may have other origins such

as tides, the clearly identifiable harmonic constituents are attributed to gravity

model differences.

The effect of the major harmonics on the Geodyn PCE/NSWC radial

r.m.s, orbit difference is easily estimated if we restrict ourselves to the 71

terms with amplitudes in excess of 10 cm. These specific harmonics provide a

contribution to the r.m.s, of 133 cm. If we remove the effect of these terms

from the r.m.s, difference between NSWC and the GSFC PCE ephemerides, the

effect is to reduce the r.m.s, from 147 cm. to 63 cm. Thus much of the 147

cm. r.m.s, is demonstrably due to the effect of these terms which are attributed

to gravity model differences. Moreover, much of the 63 cm. r.m.s, remaining

is due to specific terms at the gravitational frequencies with amplitudes less

than 10 cm. The effects of other error sources are not obvious in this harmonic

evaluation.
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This ephemeris accuracy evaluation has thus far shown that the GSFC

orbits are internally consistent at the i-2 meter r.m.s, level, and that

comparisons with a totally independent source of ephemerides, NSWC, indicate

agreement to 1.5 meters r.m.s, after the coordinate system difference is taken

into account. While we have yet to evaluate the effects of drag and solar

radiation pressure errors using a comprehensive spacecraft model, these effects

are clearly much smaller than the probable geopotential error which dominates

the 1.5 meter r.m.s.

An inspection of the amplitude spectrum presented in Figure 4 shows

that most of the major effects occur near the frequency of once/orbit

revolution. The amplitudes for the effects with a wavelength shorter than a

third of a revolution are less than S cm. which is consistent with the Seasat

prelaunch simulation presented by Cutting et al. [20]. Thus the orbit error is

long wavelength in nature and over distances of a few thousand kilometers it can

be represented by a linear trend.

Because the orbit error is long wavelength, Goad et al. [21] were able

to derive a technique which, based on global geoid data and the Seasat altimeter

data, has provided an independent estimate of the GSFC orbit error in the July

28-August 8, 1978 time period. This error estimate agrees with the 1.5 meter

radial orbit accuracy we have presented. The 50 cm. r.m.s, altimeter crossover

difference obtained by Goad et al. after using this technique to improve the

ephemeris radially is also in good agreement with the 63 cm. r.m.s, residual

noted above in the GSFC/NSWC ephemeris comparison after the removal of the

major long wavelength harmonics.

This analysis has established the fact that the dominant source of the

orbit differences between NSWC and GSFC orbits is clue to coordinate system

differences. Gravity model error is clearly the dominant effect in the remaining

differences. We cannot attribute this error to either the NSWC-or GSFC gravity

models. However, it is clear from this investigation that the current gravity

models are inadequate for the task of 10 cm. orbit determination.
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Conclusions

Several conclusions have resulted from the orbit analyses in support of

the Seasat altimeter experiment. Major improvements have been made in the

GSFC geodynamic models for Seasat. The results of the orbit analyses including

comparisons of GSFC laser and USB orbits with independently computed NSWC

Doppler orbits and the evaluation of global altimeter data crossover differences

have indicated that the Seasat ephemeris error is currently about I.S meters

r.m.s, with occasional excursions to about six meters. Based upon an anlysis of

altimeter crossover differences, the GSFC Seasat altitude ephemeris error is

regional in nature. The ephemerides are most accurate in the N. Atlantic, N.E.

Pacific and the S.E. Indian Ocean and least accurate in the Central Pacific and

the S. Atlantic.

Currently the dominant error source in Seasat ephemeris computation is

the uncertainty in modeling the earth's gravity field. Significant errors are also

due to atmospheric drag and solar radiation pressure modeling. Comparisons of

GSFC and NSWC Seasat ephemerides have indicated the presence of an

unexplained difference of about 4 m. in the location of the center of mass along

the Z axis. This difference is consistent with that obtained with earlier geoid

and station coordinate comparisons performed by other investigators.

The ephemeris error is not random but is serially correlated in time due

to the inadequacies of the force and geodetic models used to compute the

accelerations of the satellite. The behavior of the orbit error is such that over

ground tracks up to a few thousand kilometers in length, the error has the

character of a linear trend. Hence, investigations of geoid undulations and sea

surface variations with wavelengths shorter than a few thousand kilometers

should not be affected by the ephemeris error. Furthermore, collinear satellite

ground tracks result in ephemeris errors which are highly correlated geo-

graphically. Since the geoid is the same along collinear tracks, these data can

be used to study time variations of the sea surface topography.
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Future combinations of Seasat and Geos-3 altimeter data, together with

laser and Unified S-Band tracking data, are ultimately expected to produce a

gravity field which allows computations of a global Seasat ephemeris with an

r.m.s, radial accuracy of about SO cm.
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FIGURE 3a POWER SPECTRAL ANALYSIS OF RADIAL EPHEMERIS DIFFERENCES
GEODYN PCE ORBIT

VS.
GEODYN PGS-S3 NOMINAL ORBIT
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FIGURE 4

POWER SPECTRAL ANALYSIS OF ORBITAL DIFFERENCES

GEODYN PCE ORBIT VS. NSWC CONTINUOUS EPHEMERIS
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Summary

Infrared Earth horizon sensors in combination with a sun sensor

have proven useful for autonomous station keeping of geosynchronous

satellites but the complexity of a fully self-contained autonomous naviga-

tion system for low altitude satellites has discouraged implementation of

such a scheme. A relatively simple system which would use horizon

crossing indicators, a sun sensor, a quartz oscillator, and a micropro-

grammed computer is being studied.

The sensor combination is required only to effectively measure the

angle between the centers of the Earth and the Sun. Simulations for a

particular orbit indicate that Zkm r. m. s. orbit determination uncertainties

may be expected from a system with 0.006 measurement uncertainty. A

key finding is that knowledge of the satellite orbit plane orientation can be

maintained to this level because of the annual motion of the Sun and the

predictable effects of Earth oblateness. The basic system described above

can be updated periodically by transits of the Moon through the IR horizon

crossing indicator fields of view. The extent to which these conclusions

may be applied to a larger class of satellite orbits is under study.
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Introduction

Previous autonomous navigation schemes (references 1 and Z) have

had two characteristics which have caused them to be noncompetitive with

normal ground navigation techniques; they tend to be low accuracy systems,

yet they require inordinate onboard processing capability. Higher accuracy

autonomous systems such as the Space Sextant are even more complex and

require a large sacrifice of payload capability to perform the optical measure-

ments and complex data reductions. To date, the most successful applications

of the autonomous navigation concept have been for limited functions, most

notably automatic longitude station keeping of geosynchronous satellites

LES 6, LES 8, and LES 9 (references 3 and 4).

The present application of interest is for a self-contained low

accuracy ( 12 k. m., 3G) system with minimal payload allocation requirements.

The success of this approach hinges less on accuracy than on degree of

autonomy and simplicity. The trap we wish to avoid is the common one of

proposing a massive and complex system that is able to overcome all possible

problems other than those of cost, practicality, and self-sufficiency.

As envisioned, the completely self-contained on board navigation sys-

tem will use one or more Ii_ Earth horizon crossing indicators, aSunsensor,a

quartz oscillator, and a microprogrammed computer to deliver the

desired overall orbit position accuracy of 12 k. m. ,3G j or better throughout

a six month lifetime mission. Such a system has the potential to provide

this level of self-contained autonomous navigation accuracy over very long

mission lifetimes measured in years instead of months. It is important to

keep in mind that the proposed system is truly autonomous in the sense

that it is independent of other systems such _s Eround or o_bit/n 8 rat}i@

beacons which are susceptible to jammin E or destruction.

To date, a 470 km circular orbit with 54 ° inclination has been

studied using a special version of the FLEXSAT program.

A brief description of this program is given in Appendix B.
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Sensor Measurement System

Figure 1 illustrates a conventional attitude sensor configuration

that is well suited to perform autonomous navigation functions. The

spinning satellite uses one or more narrow angle I1% horizon crossing

indicators and a wide angle Sun sensor. For autonomous navigation with

horizon crossing indicators it is desirable to orient the spacecraft spin

axis normal to the orbit plane as shown. This may be controlled by monitoring

attitude throughout the orbital period and minimizing variations in the horizon

scanner pulse widths by means of attitude maneuvers when required. The

attitude measurements allow determination of the direction to the center

of the Earth with respect to the Sun at each scan. As indicated, the hori-

zon sensors can also detect the Moon. This opportunity will occur at least

twice in a sidereal month. The moon 6bservations provide an inertial refer-

ence update that normally would require the extra complexity of a separate

star sensor system. For the system shown in figure 1, a wide angle sun

sensor is used to measure the times of Sun crossings through the instru-

ment field of view and the elevation of the sun with respect to the optical

axis of the sun sensor. The horizon and Sun transit times, along with the

Sun elevation, yield the angle between the centers of Earth and Sun as seen

from the satellite.

An ambiguity exists in this measurement system, in that a rotation

of the satellite orbit plane about the Earth-Sun line would be undetectable

in the observations if the gravitational potential field of the Earth were that

of a sphere rather than that of an oblate spheroid, and if the direction of

the Sun in inertial space were fixed. The proposed system takes advantage

of the known nature of Earth oblateness effects (see Appendix A) and of

the orbital motion of Earth in the plane of the ecliptic. The dynamical effects of

oblateness include regression of the nodes along the equator; the orbital motion of

Earth defines the ecliptic plane. Periodic Moon observations remove any

remaining ambiguity. Initial orbit knowledge at time of orbit injection

should be sufficiently accurate (528 meters, 0.61 m/sec ) to provide

confidence that the ambiguity will not be a problem in practice.
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Error Model

For the initial studies, the sensor measurements have been simu-

lated in the form of angular distance between the centers of Earth and Sun

at one minute intervals during the portion of the orbit in which the Sun is

visible to the satellite. A_u uncertainty of 1700 m (reference 5) was

assumed for the uncertainty in the height of the 14-16 micron absorption

layer of Earth's atmosphere. This translates to a horizon sensor angular

measurement error of

_h = 0o042

for a 470 krn altitude orbit.

The Sun sensor can measure angular position of the Sun to

a = 0003
es

and the angular uncertainty between the optical axes of the horizon and

Sun sensors is
a = 0002.
Oa

W e c onside r time-tag unce rtaintie s re sulting from instrumental, delay and

clock error to be similar in magnitude to a_ . The uncertainty, a_ in

the angle between the center of Earth and cen_er of Sun is approximately

the r.s.s, of these errors or

2 2 z i/2
a8 = (aeh + gOs + 2 °Ca ) = 0006 '

which is the angular uncertainty used in the simulations.

FLEXSAT was used to generate state vector covariance matrices

based on the angular measurement uncertainties. The ballistic drag

value, CDA/W , was also estimated. In addition, the Kalman filter perfor-

mance was tested by perturbing the initial values of the estimated parameters
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by the amount of the_a priori uncertainties. These uncertainties are

listed in Table I. The reference trajectory value of CDA/W was O. 037 m2/kg.

Additional filter errors were introduced by modelling an eighth

degree, eighth order geopotential field in the numerical integration of

the reference trajectory used to generate the simulated observations,

whereas a second degree, zero order fit model was used. Corresponding

covariance uncertainties were roughly approximated by adding process

noise to the covariances in the form of acceleration uncertainties,

: 8o.zug,

to represent high frequency geopotential accelerations and unmodeled

aerodynamic drag variations. The low frequency JZ term, in contrast,

produces accelerations of up to about 1000_g. The simple analytic dis-

turbing function of Appendix A serves to model the J2 accelerations very

precisely. The velocity vector of a satellite in an inclined orbit is there-

fore surprisingly determinable in equatorial coordinates without a stellar

reference.

Effect of Orbit/Sun Geometry

Figure 2 illustrates the various possible extremes of geometry for

a 34 ° inclination orbit, depending upon the time of day of launch and the

time of year. Consider the Sun 1, Sun 2 and N axes to be in the plane

of the drawing. The Sun 3 axis, equatorial plane, and satellite orbit plane

are normal to the plane of the drawing. As shown, the Sun can be within

+ 23.o5 of the equator, depending upon the time of year. Sun 1 and Sun 2

positions are extremes of solar declination. In the drawing they are placed

normal to the satellite line of nodes so that at Sun Z the maximum angle of the

orbit plane to the sun line of 57 °. 5 is attained. That this is unfavorable geometry

is evident. At the limit, 90 ° is singular, for if the satellite attempted
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to navigate by observing a celestial object at N, normal to the orbit plane,

it is seen that in a circular orbit the Earth-object angle would not change as

a function of time, to first order.

The Sun 3 geometry is also unfavorable, as the sunline is coplanar

with the satellite orbit. Since this particular configuration again places

the satellite line of nodes on the ecliptic line of nodes, the orbital inclina-

tion of the satellite is not directly observable.

Position Uncertainties

Table Z contains the peak remaining radial, intrack, and crosstrack

position standard deviations for each of the three extreme Sun orientations

after nine simulated orbital revolutions of the satellite, using FLEXSAT

covariances. An advantage of a recursive real time filter is that the

customary predictionerrorsare limited to data gaps, which in this case

are somewhat less than half of each orbit revolution.

The largest crosstrack errors are associated with Sun 1 orientation,

with Sun 3 a close contender. Figures 3 and 4 plot the time history of

these covariance-derived uncertainties as a function of time from injection.

It is seen that the orbit solutions are stable but not overly convergent.

Simulations with a spherical Earth model produce crosstrack uncertainties

that increase with time, as expected, in the presence of the 80_g acceleration

noise that simulates unmodeled high frequency geopotential and drag terms.

This results from the ambiguity in the orientation of the orbit plane that

would exist except for the measurable presence of the J2 disturbing function.

The largest position uncertainty was found to be the intrack standard

deviation in the Sun Z configuration, which also produces the largest radial

uncertainty (see Table Z). The time history from injection of these errors

is plotted in figures 5 and 6. As expected, these exhibit more convergent

behavior than do the crosstrack uncertainties, which more closely reflect

orbit plane orientation errors. However, it should be noted that the highest

intrack errors are initially large and do not converge to the extent of

recoveringa priori knowledge. The Earth horizon measurement errors, of

course, map directly into intrack orbit errors.
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Effect of Injection Knowledge

The previously described cases used the somewhat conservative

orbit injection knowledge uncertainties and errors in Table i of

= _ = 3048 m
_X, y, z xp y, z

_x,y,z = 2[Jc, y,_. = 3.048 rn/sec.

The crosstrack errors for a typical nominal case (Sun at first point of Aries,

_2Sat = 90 °) are plotted from injection through nine orbit revolutions in

Figure 7.

To verify the dependence of orbit plane orientation knowledge on

injection knowledge and to test the capability of retaining this knowledge, a

similar case with more realistic injection knowledge and errors was run

using

Fx =ax =,y,z, ,y,z
528 m

(rJc,_r,_, = _:,_r,_ = 0.61 m/sec.

Radial uncertainty was reduced from about 600 m (nominal case)to 400 m

on the ninth orbit revolution, while intrack uncertainty was reduced from

2700m (nominal case)to 1900m on the ninth revolution. The important

crosstrack uncertainty is plotted in Figure 8. It is seen that the injection

knowledge of 528 m is retained through the ninth orbit revolution and even

improved slightly between the first and ninth revolutions. This is certainly

encouraging in light of the importance of minimizing orbit plane orientation

errors. As expected, however, the solution displays slightly divergent

characteristics. In time the errors might be expected to grow to the size

of those in Figure 7.

Filter Errors

The largest filter estimate difference from the "truth" state vector

or from the "truth" ballistic drag value is less than 3G, where the value

of G is obtained from the covariance matrix associated with the particular
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estimate. Assuming a Gaussian error distribution, one would normally

expect to see an occasional 3G estimate. The great majority of estimates

are less than IG from the "truth" model. The actual estimates are

accordingly better than Table 2 and Figures 3 - 8 indicate. In these cases

the conservative process noise of 80. ?-figserved to maintain the filter

covariance matrix at a reasonably high level. The fact that there was

convergence and that the actual errors showed reasonable conformity

with the sigmas from the covariance analysis indicates that the filter

covariances are realistic. Since in theory they represent an infinite sample

of Monte Carlo trials they are the numbers tabulated and plotted in this

paper.

Moon Ob s e rva tions

Figure I illustrates how the horizon crossing indicator will, in

general, view two portions of the Moon's orbit (the second view area is

on the opposite sides of the satellite and Moon orbits). When the Moon

enters these view areas, once every siderealmonth for each portion, the

14-16 micron bandwidth horizon sensor will detect the Moon for several

satellite orbit revolutions on each occasion. The exact length of viewing

time depends upon the horizon sensor field of view and the inclination o£

the satellite orbit plane to the orbit plane of the Moon.

The Moon observations can be used to periodically update the orbit

knowledge with independent observations. These observations fix the

satellite state in inertial space in a direct manner. If two horizon crossing

indicators are used in order to scan both north and south of the orbit plane,

then two additional Moon viewing periods are available in each sidereal

month. This system would seem to be superior to a system using

only one horizon crossing indicator in any event, when the attitude

determination problem is examined.

The principal value of Moon observations is to provide periodic

recovery capability in the event that orbit knowledge is lost or degraded

owing to larger than expected injection errors, degraded sun sensor per-

formance, transient data stream/clock/microprocessor failures or un-

expectedly large perturbations to the satellite orbit. A very compact,
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pro-calculated lunar ephemeris would suffice because of the infrequency of

Moon observations. With two horizon sensors, the Moon would nominally

be observable for four or five orbit revolutions per week. To account for

the large IR radiation differences between the illuminated hemisphere of

the Moon and the dark side, a lunar phase-dependent model of the asym-

metric sensor response would be a necessary part of the pro-calculated

ephemeris. Figure 9 shows the essential elements of the navigation system,

including the Moon data capability. The dashed lines indicate that the Sun

elevation measurements are optional for attitude control, but may prove

useful.

Clock Errors

All horizon, Sun, and Moon observations must be time-tagged by the

onboard oscillator. A typical quartz oscillator is stable to one part in 10 9,

or 30 msec/year. To make use of 500 m injection accuracy we desire

clock errors no larger than

500 _x 5640
< 684825Z x Z_r _ 66msec

during the intervals between Moon observations, which is clearly not a

problem. In the above example the orbital period is 5640 seconds and the

orbit semimajor axis is 6848252 m.

Onboard Computer Requirements

The products of the autonomous system diagrammed in Figure 9 are

the satellite ephemeris at bottom center and the attitude control function at

upper right of the chart. The recursive orbit filter and attitude computations,

ephemeris evaluation, and info.rmation management throughout the system could

be performed by _ micr{rprogrammed I/O and central processor system.

The requirements are currently being studied, _ut it is estimated that a 32k word

memory and 16 bit fixed word length should be a_lequate.
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Conclusions

An autonomous navigation system such as the one diagrammed in

Figure 9 would appear to be capable of delivering accuracies normally

associated with horizon sensors in conjunction with a stellar attitude

system (reference 7). It is felt that the extra complication of a star

sensor may be unwarranted considering the relatively good performance

of a horizon sensor and sun sensor system. To fully assess the value of

such a system, ho%vever, it is important to study the particular orbital

characteristics of the intended mission. For example, simulations indicate

that some high inclination missions may be a poor choice or would at

least require further study. Accuracy will also be dependent to some

extent on orbit altitude.
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Appendix A

where

The disturbing function of an equatorial bulge is

D -- - " Jz(3sinZ -i'v ,
2r 3

N isGM
Earth '

r is the instantaneous radius vector,

J2 is the second degree Legendre polynorr_ial coefficient

for Earth,

is the instantaneous declination of the satellite.

The secular perturbations are then

Ds 27r dM
0

where M is the mean anomaly.

In terms of orbital elements a, e, i, _,$2, Mo,the principal secular

effect is a regression of the nodes along the equator,

3n J2
d_2 s= - cos idt,

2ai(i_e2) 2

where n is the mean motion.

Depending upon whether orbital inclination is less than or greater than

i = arc sin (2/V_ = 63._3 , the line of apsides will secularly advance

or regress according to

3n JZ 5 2i

d_ s = 2aZ(1.eZ)Z (_ sin -2) dt.

Secular changes in the orbital period are also a function of a, e, and i as

the mean anomaly change s by

3 J2
dMs = ndt[ 1- 3 Z .

ZaZ( l_eZ)3/Z ([ sin 1 - I)].
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ONBOARD CALCULATIONS FOR HORIZON/SUN SENSOR AUTONOMOUS

ATTITUDE AND NAVIGATION SYSTEM
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AN EVALUATION OF GALILEO - VIKING DIFFERENCED RANGE

IN GALILEO - MARS FLYBY NAVIGATION

F. B. Winn, E. W. Walsh, M. P. Ananda, F. T. Nicholson

Jet Propulsion Laboratory

California Institute of Technology

ABSTRACT

The navigational requirements of Galileo as it swings by Mars

[flyby distance is 275 km from the Martian surface; 25 km (iO)] are

going to be met with interferometric angular measurements (VLBI) and

range and range-rate measurements. Like VLBI, dual spacecraft differ-

enced range is less sensitive to Mars ephemeris errors and tracking

station location errors than conventional range and Doppler. Similarly,

differenced range provides angular information about the separation

between the Mars Viking Lander land the Galileo spacecraft. In covariance

studies, dual spacecraft range coupled with conventional range and Doppler

is shown to estimate the Galileo-Mars flyby distance to better than i0 km

(io) which is comparable to the VLBI performance. For the Galileo-Mars

flyby, dual spacecraft differenced range promises to be an excellent

backup to VLBI if the Mars Viking Lander remains operational.

This paper presents the results of one phase of research carried out at the

Jet Propulsion Laboratory, California Institute of Technology, under Contract

NAS7-100, sponsored by the National Aeronautics and Space Administration.
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I. INTRODUCTION

Galileo, a NASA spacecraft to be launched in 1984 by the Space Shuttle/IUS

launch vehicle, will travel from earth to a Mars flyby on an ultra fast trajec-

tory: a flight time of less than I00 days. On such a high acceleration tra-

jectory (Fig. i), conventional Galileo radiometric tracking data, 2-way range

and Doppler, can establish the heliocentric position of the probe to a standard

deviation of ll km.

The Mars ephemeris has an additional 40 km 'in-track' position uncertainty

such that the Mars-Galileo relative position uncertainty exceeds 40 km (iS).

It is essential to know the Mars-Galileo relative position to better than 25 km

(i_). The closer Galileo can be flown past Mars, the smaller the Galileo rocket

maneuver that will be required to,send Galileo on to the Jupiter system (Fig. 2).

The AV requirement of Galileo's rockets increases 40 m/s per i00 km increase in

the flyby distance (Fig. 3). The Mars flyby is being used to provide a con-

trolled acceleration to the Galileo spacecraft.

Deep space probes, such as Galileo, are tracked and navigated from earth.

That is, a radio carrier is beamed to a dist_nt space probe. The probe trans-

ponds the radio tone back to earth. The frequency difference between the

earth transmitted and received signal is the Doppler shift - a measure of

the spacecraft radial velocity. Modulation placed on the radio carrier is

used to measure the light time separation between earth transmission to

and reception from the spacecraft. These conventional radio metric data

types, Doppler and range, measure in the radial direction only.
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Because of topocentric parallax, at any instant of time the radial velocity

of a probe is different at each terrestrial tracking station. This uniqueness

of Galileo and Vikln_range and range-rate, that is dependent on topocentric

position, permits the determination of the relative Galileo-Viking angular

separation.

In covariance studies, Galileo conventional range and Doppler could

estimate the Galileo-Mars flyby distance to 40 km (o) while a combination

of doubly differenced range which exploits the relative topocentric parallax

in conventional range and Doppler yields a standard deviation of

less than i0 km and does so 25 days before Mars encounter (Fig. 4).

Galileo Project plans call for the Galileo spacecraft to flyby Mars 275 km

(Od = 25 km) above the planet's surface (Ref. i). To achieve this accurate

flyby two new technological advances must be accomplished: one, the Mnrs

ephemeris must be improved to better than 25 km (o) and this effort is in pro-

gress; two, a wide-band Very Long Base Interferometry technology must be deve-

loped that will permit the Galileo spacecraft and Mars trajectories to be

defined in a quasar inertial reference frame. This latter effort is underway

also and offers not only a means to reduce the Galileo-Mars relative trajectory

errors but VLBI cancels the preponderance of the Deep Space S_ation (DSS)

l_catien effects on orbit determination.

The Viking Mars Lander I softly touched down on the Martian surface on

July 4, 1976, and it still functions. It is expected to be operational
in the Galileo era.
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As circumstances are now, the current Mars Ephemeris and DSS locations

uncertainties limit the Galileo-Mars relative navigation such that a O d _ 25 km

is not achievable with Galileo radiometric range and doppler alone. Galileo-

Viking doubly differenced range provides a promising approach to Galileo's

navigation objectives independent of an improved Mars ephemeris or a new VLBI

technology. It does require the survival of the Viking Lander, however, in 1984.

II. DOUBLY DIFFERENCED RANGE DEFINITION

Figure 5 shows two Deep Space Station (DSS) tracking first one space-

craft and then the other. Thus, four range measurements are obtained and

although the order of the range measurements taken in Figure 5 are DSS-I to

Viking, DSS-I to Galileo, DSS-2 to Viking and DSS-2 to Galileo, the order is

arbitrary.

With a restricted view to a single spacecraft, it is easy to show that

the relative topocentrlc range (Fig. 6) involving 2 DSS is

4P = _Z sin 6 + _L cos 6

where

or

AO - P2 - Pl

AZ = north-south projection of the DSS baseline on that plane

possessing the baseline and the spacecraft

AL- east-west projection of the baseline

AL = AI cos (_ - LST)
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with

A% being a linear separation between the DSS in the earth

equatorial plane

LST = local sidereal time at the % of the baseline

I = (IDSSI + IDSS2 )/2

Now if the relative range, Ap, from 2 spacecraft are combined in a second

difference

A2p. Ap G - AO v
[_ signifies Galileo ]signifies Viking

A2D = AZ [cos 6 G AS]

[sin aG-LsT) cos (I)

+ cos (_C - LST) sin 6G AS

A2p is a function of the relative plane-of-sky coordinates of the two

spacecraft and the baseline projection onto the plane-of-sky. It's sensitivity

to the Mars ephemeris is less than that of AO or p.

BA2O BAP G BAp V

ad(state) 8J_'(state) a_:f(sta re)

but

aA2p a_p

a (Galileo State) a(Galileo State)

Specifically, A20 is 20% (2 months before Mars encounter) to 50% (at encounter)

less sensitive to the Mars ephemeris error than Ap G as is shown by the RSS of

Ap and A2p partials with respect to the heliocentric position of Mars (Fig. 7).

In Figure 7 there are three graphs, one for each baseline used in the study.
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DSS43 is located in Woomera, Australia.

and DSSI4 is at Goldstone, California.

dlnates are tabulated in Table I.

DSS63 is located in Madrid, Spain,

The DSS approximate spherical coor-

Since the DSS are separated in longitude, from 94 ° to 154 °, Mars is in

view over each baseline at different times. The Viking Lander can only be

ranged in the cool morning Martian hours and only ranged once per Martian day.

Thus, as indicated in Figure 7, the Viking Lander can be ranged about 50% of

the days that Galileo is in flight. Table II presents the 43 different occa-

sions. Each baseline can range the Lander for 8 to 12 days repetitively.

Each baseline's performance is not only time dependent, but is also

governed by the alignment of the baseline with respect to the Galileo-Mars

angular separation at encounter (Eq I). In essence, the Viking and the

Galileo AO measurements provide information as to the direction of each space-

craft with respect to the baseline but only in the direction of the baseline.

Orthogonal to the baseline there is no information. And, of course, when Ap

measurements are differenced to obtain A20_ A2P defines the earth centered

angular separation be_een the two spacecraft only in the baseline direction.

Figure 8 shows the baseline orientations relative to the Mars-Galileo direction

at encounter. The DSS43 - DSS63 baseline which is approximately 4 ° offset,

yields the strongest information concerning the flyby distance while the DSS63

- DSS14(_12 ° offset) and the DSSI4 - DSS43 (_60 ° offse_baselines provide

progressively less information.

Table I_I itemizes the theoretical error assessments of A2p resulting

from instrumentation and transmission media.* From Table III it is apparent

,
Philip Callahan, Jet Propulsion Laboratory, private communication
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that it is thermal noise [galactic backgroug, d (6°K), receiver front end elec-

tronics (6°-Ii ° K), antenna cable (3 ° K), transmission media (i0 ° K), etc. ]

when subjected to high gain that dominates the A2D error budget. A full 90%

of the A2D RSS noise is from this source. The result is that _2p should

have an RMS error of_2 m and 2m is the a priori standard diviation used in

covariance study. Most of the systematic errors due to solar plasma, tropos-

phere, ionosphere, DSS clock errors, spacecraft and station delays cancel. In

addition, since tracking stations are used redundantly to track both Galileo

and Viking, DSS longitude errors tend to cancel in the formation of 42D (Fig. 9).

DSS uncertainties in the other two coordinates are of little consequence since

their effect upon A2D is from one to two orders of magnitude smaller yet.

III. THE GALILEO-MARS FLYBY DISTANCE COVARIANCE STUDY

The covariance analysis performed in this paper allows a maximum likelihood

estimated with gaussian errors on the observations. The assumed observations

include two-way coherent Doppler data from the Galileo spacecraft using the

three Deep Space Network stations continuously, one Doppler measurement every

one hour, one range measurement from the Goldstone station every day and the

available doubly differenced range measurements as shown in the Table II. Since

the dynamic state parameters are non-linear functions of the measurements, the

observation equations are l_nearlzed and the results obtained are based on a

linear estimator. When a standard maximum likelihood estimator is constructed,

the computed statistics based on data noise errors, do not reflect the effect

of model errors in the solution. Thus the statistics must be adjusted to
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account for these effects.

The measurementequation can be written in the form

where Z is the vector of measurements,_ the vector of estLmated parameters,

the vector of model parameters whose effects on the estimated parameters are

to be investigated and _ the measurementerrors. A weighted least squares

estimator of _ can be obtained by (Bryson and Ho, 1969)

X :(A_-IA )-I ATp_I_

with the assumption that _ is a randomvector of zero meanwith covariance Pc'

^E(_) = o, Coy (_) = P and E = 0 and the covariance of _ is given by

(^) + P ATp-Icp cTp-iApp c =Cov _ = ?x x c x
x

-i
where P - (ATp-IA) is the voir covariance matrix. The matrix P c is known as

x x

the 'consider' covariance matrix and the matrix A and C are the partial deriva-

tives of the measurements with respect to the estimated and the consider para-

meters. Both the Galileo orbital state and Mars ephemeris parameters are trea-

ted as estimated parameters, and the station locations, Viking lander locations

and Mars mass are treated as 'considered' parameters. The apriori uncertainties

of the parameters are given in Table IV.

In the model used to assess A20, the trajectory parameters of the Galileo

probe was estimated in a manner that considered the uncertainties associated

with the Mars Ephemeris, the DSS location set,them ass of Mars, the Viking Lander

positio:_ (Table IV).

With this parameter set and the Galileo data set (Table V), the Galileo
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heliocentzic position can be estimated to 35 km (O), Figure I0, and this

uncertainty stems principally from DSSlocation uncertainties. The Galileo

trajectory does not sense the gravitational effect of Marsuntil the last daybefore

encounter. Galileo travels over a million kilometers on that last day.

Figure i0, the 'Standard Deviation of Galileo Heliocentric Position',

shows O in kilometers as a function of time in days from Mars encounter or
O

wheneach simulated Galileo data arc stops. All estimates of o involve data0
that starts 88 days before Mars encounter. Each estimate, following the E-85d

estimate, has an additional five days of data added to the solution. All of

the standard deviation plots presented have this sameformat.

Galileo, Mars-centered, position estimates have a standard deviation

equal to the RSSof Galileo's heliocentric position sigma and the. Mars ephemeris

position standard deviation (Fig. lla).

Figure II not only exhibits the standard deviation of the Galileo flyby

but shows the componentsof od related to the Mars Ephemeris(o d I Mars Ephemeris)'

the DSS locations (Od I DS S Locations) and data noise(od i data noise)"

Since Galileo is over a million kilometers away from Mars at E-I d, Galileo

does not see Mars gravitationally until E-2 h and any effort to utilize Galileo

tracking data to improve _.he .Mars ephemeris fails. Hence, the ephemeris pro-

vides a near constant 40 plus kilometer component to Od(RSS).

As indicated in Figure ii, Odl DSS Locations increases as the earth-probe

distance increases. That is, DSS angular locat'ion uncertainty in an Euclidian

solar system results in larger and larger spacecraft linear position uncertainty

with increased topocentric range. However, if DSS coordinates were estimated,
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instead of considered, this procedural artifact would disappear as in Fig. 2.

And lastly, in Figure ii, the data noise is shown to fall off with the

square-root of the numberof observations.

Whenthese A2p observations of Table II are added to the conventional

Gelileo data cf Table V, the effects of the Mars ephemeris and the DSS location

uncertainties are reduced. This should be expected since the RSS of the partials

of the Mars position coordinates (Fig. 7) and the DSS coordinates (Fig. 9) with

respect to A20 are 2 to i0 times smaller than those with respect to A0. That is,

each A20 observation is less sensitive to these error sources, but A20 and A0

possess the same sensitivity to the Galileo-Mars relative state. Figure 12

exhibits the ephemeris, DSS, and data noise contributions to od. The data

ensemble of A20, conventional range and Doppler yields a od < I0 km (o) 25 days

before Mars encounter. This is an improvement over conventional data reductions of

four-fold. As can be seen in Figure 12, the correlated ephemeris and DSS loca-

tions uncertainties in each p observation cancel in the formation of A20 . As

modeled, Mars ephemeris and DSS location uncertainties still dominate the stan-

dard deviation of the Galileo-Mars encounter distance estimate, however, their

combined RSS contribution is less than I0 km (O).
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This covariance study shows that Galileo-Mars navigation is improved

four-fold when dual station range from both Galileo and Viking are added

to conventional Galileo tracking data and reduced. In essence, the Mars

ephemeris and the tracking station uncertainties are differenced out of

the new doubly differenced range data type, to a large extent_ while little

Galileo-Mars relative state information is lost. The information content

of doubly differenced range is analogous to that of wideband very long

baseline interferometry and promises to be an efficient backup the Galileo

Project planned VLBI. Doubly differenced range coupled with conventional

tracking data can be used to estimate Galileo-Mars flyby distance to better

than I0 kln (o).

Reference

Project Galileo Navigation Requirements, PD 625-565, JPL 19 April 1979,
JPL Internal Document.
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TABLE I: Tracking Station Spherical Coordinates

DSS Longi tude Lati rude

43

63

14

14970

355.8

243 .I

35?3

-35.3

40.3
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TABLE ili: Doubly Differenced NSR Error Budget

INSTRUMENTATION :

STATION CLOCK STABILITY (15 MIN)

STATION DELAY CALIBRATION

SNR (THERMAL NOISE)

WAVEFORM DISTORTION

SPACECRAFT DELAY

4 CM

200 CM

88 CM

28 CM

MEDIA:

TROPOSPHERE (25 ° ELEVATION)

IONOSPHERE (25" ELEVATION)

SOLAR WIND

20 CM

6 CM

15 CM

RSS 222 CM

ASSUMPTIONS:

V!KIf!G LANDER - GALILEO SEPARATION _ 5:

DATA AT OPPOSITION ~ 0.7 AU

TWOSTATIONS OBSERVE LANDER IN TURN APPROX. 15 MIN EACH

SAME TWO STATIONS OBSERVE GALILEO IN TURN APPROX. 15 MIN EACH
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TABLEIV: Galileo-Viking Parameter Set

PARAMETERS

Galileo State

Mars State

DSSLocations*

Viking Lander
Locations

Mars GM

MODELSTATUS

Estimated

Considered

Considered

A PRIORI

oX = Oy = cz = lO7 kin; o_ = o3 = o_ = lO0 km/s

Oradial = lO km; Oin track

= 70 km
°out-of-pl ane

: 40 km;

Consi dered

Considered

c_,,= 3.0 m; Ors = 1.5 m; °rz = 15.0 m

= = 40.0 m; cz = 300.0 m;ox lO.O m; oy

cx = Oy = oz = lO-3 m/day

o = O.l km3/Sec 2

rs = DSS distance from terrestrial spin-axis

rz = DSS distance from earth equator plane
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TABLEV: Schedule for Conventional Data

DATATYPE (o) RATE DSSACQUIRING

Galileo Doppler

Galileo Range

1 mm/s

1 km

l pt/hr

l pt/pass

14, 43, 63

14

Start: 6 March 1984 (Ec_.- 88 days) Stop: 2 June 1984 (Fc_- 20 min)
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FIGURE.4: Uncertainty of Galileo-Mars Flyby Distance
as a Function of Time-to-GO
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First data occurs at E-88 _ and continues uniformly

until Mars encounter. Estimates of flyby distance

are obtained every 5 d after E-85 d until Encounter.
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FIGURE5: Range Components of Doubly Differenced Range
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FIGURE I0: Standard Deviation of Galileo

Heliocentric Position Estimates, o
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An Analysis of GDOP in Global

Positioning System Navigation

Bertrand T. Fang

Computer Sciences Corporation, Silver Spring, MD

ABSTRACT

The accuracy of user navigation fix based on the NAVSTAR

Global Positioning System is described by a 4x4 position-

time error covariance matrix. The "trace" of this matrix

serves as a convenient navigation performance index and

the square-root of the trace is called Geometric Dilution

of Precision (GDOP). In this paper, certain theoretical

results concerning the general properties of the navigation

performance are derived. An efficient algorithm for the

computation of GDOP is given. Applications of the results

are illustrated by numerical examples.
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An Analysis of GDOP in Global

Positioning System Navigation

Bertrand T. Fang*
Computer Sciences Corporation, Silver Spring, MD

INTRODUCTION

The NAVSTARGlobal Positioning System (GPS), when fully op-
erational in the early 1990's, will provide world-wide

navigation through synchronized transmissions from a con-

stellation of eighteen 12-hour period satellites in three
55°-inclination orbital planes. An accurate user navigation

fix (position and time) will be obtainable by receiving

transmissions from four satellites and decoding the signal
transit times.

One may relate the measurements, referred to as the pseudo-

ranges, to the navigation state as follows

(i)

where C = velocity of light

T. = Signal transit time from GPS satellite
J

"j" to user, not corrected for user

clock offset, _t

XI,X2,X3,X 4 = user naviagation state, the first three

represent a set of convenient Carnesian

user coordinates, X 4 = C_t is a range

bias equivalent of user clock offset

Xl,X2,X 3 = corresponding Cartesian coordinates of

GPS satellite "j"

n. = random measurement noise
J

Senior Principal Engineer, Orbit Operations, System
Sciences Division.

12-2



From a set of four measurements, a user navigation fix may

be determined. The accuracy of the fix is characterized by

the following 4x4 position-time navigation error covariance
matrix

P = (HTwH)-I (2)

where H = measurement parital
derivative matrix

_'I" l, I
I
I s (3)

a, b, c and d = line-of-sight unit vectors from a set

of four GPS satellites to the user, W = 4x4 covariance

matrix of random measurement noise, superscript "T" =

transpose of matrix.

The measurement error covariance matrix W is generally taken

to be diagonal, which is strictly true for uncorrelated

measurements only. In practice, assignments of quantitative

values to the elements of W also takes into consideration

such factors as the elevation and health status of individual

GPS satellites. Thus W may be more appropriately be re-

ferred to as the weighting matrix. For uniform weighting, P

is proportional to (HTH) -I, which depends only on the rela-

tive geometry of the user and the four GPS satellites, as is

evident from Equation (3)- The square-root of the "trace"

of (HTH) -I is referred to as Geometric Dilution of Precision

(GDOP), a self-explanatory name. Whatever the weighting

strategy, the "trace" of the navigation error covariance

matrix serves as a covenient and natural performance index
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characterizing the accuracy of the naviagation fix.

a diagonal weighting matrix W,

For

TRACE "P" = sum of diagonal terms of (HTH)-1 weighted

by the inversesof the corresponding ele-
ments of W

Thus the evaluation of the GPS naviagation performance is

essentially equivalent to the computation of the diagonal
terms of (HTH)-I, which may be called the GDOPmatrix for

convenience.

The navigation performance index, Trace "P", also serves as
a criterion for the selection of a set of four best GPS

satellites among those visible, which may be as many as ten

for users which are satellites themselves. If, for optimum

performance, each of the different combinations of four has

to be evaluated, the computational burden can be considerable.

In the following, certain theoretical results concerning

the general properties of the GDOPmatrix are derived. An

efficient algorithm for the computation of GDOPmatrix and

the navigation performance index is given. Applications of
the results are illustrated by numerical examples.

ANALYTICAL RESULTS

To solve for a navigation fix from four measurements, the
partial derivative matrix H must be non-singular. Since

determinant H =

aT-d T 0

bT-d T 0

cT-d T 0
dT 1

a -d

b -d

c -d
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a navigation fix can be determined from four GPS satellites
with line-of-sight directions a, b, c, d, if and only if

the three vectors (a-d), (B-d), and (c-d) are linearly inde-

pendent, i.e., non-coplanar. This shall be assumed to be
the case in the following development.

Since Trace (HTH)-I = Trace (HHT)-I, by making use of

Equation (3) and the fact that a, b, c, d, are unit vectors,
one obtains,

Trace (HTH)-1

- r ce

= Trace (HHT) -I

bTc*l bT +,

-.r

(4)

The advantages of dealing with HH T instead of HTH will

become obvious below.

The following may be observed from Equation (4):

i. The matrix HH T in Equation (4) is non-negative,

symmetric, and with identical diagonal terms which

are greater than the off-diagonal terms. (Expres-

sions such as aTb are scalar product of unit

vectors and are less than unity). These properties

give rise to good behaviour in numerical operations.
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• Since the Trace of a matrix is equal to the sum

of its eigenvalues and the eigenvalues of the

matrix inverse are inverses of the eigenvalues of

the matrix itself, one has the following results:

a. Trace (HHT) -I = ! + ! + _ + r , where the

_i A2 _3 K4

_'s are eigenvalues of (HH T) with

b. From "a" above and the fact that the _s are

non-negative, one may conclude that

T,.-_c_ ('H Wr ]-'_ z (5)

c. Let us order the eigenvalues of HH T as

One has the obvious inequality

, , J_+!

>X, + N*

or,

(6)
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d.

Thus knowledge of the smallest eigenvalue of

HH T provides another lower bound for the

navigation performence index. Sometimes this

lower bound also serves as a good estimate.

The 2x2 principal submatrix of HH T, e.g.

I T2b+l aT_+ 1 has eigenvalues 3+aTb and

l-aTb. From the Theorem of Root Separation

1
for Symmetric Matrices one obtains the follow-

ing bounds on the eigenvalues of HH T

Ii < l-aTb < I 3 (7)

k2 { 3 + aTb_ A.4 (8)

These inequalities have no preferences for the

labeling of the unit vectors. That is, a, b

may be replaced by c, d, etc., to obtain sharper

bounds. In particular, one must have _! _

and _ > _ Therefore, the eigenvalues of

HH T cannot be all identical and the equality

sign in (5) may be deleted. Physically, this

follow from the fact that the four unit vectors

in three-dimensional space cannot play identical

roles in the four-dimensional position-time

space. Combining inequalities (6) and (7), one

obtains another inequality.

(9)

where _ = smallest angle subtended by two

line-of-sight vectors.
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This inequality, although not sharper than

Inequality (8), is easier to calculate, and

expresses the intuitive rule of thumb that an

accurate navigation should not rely on a GPS

constellation that is clustered together. We

shall see later that with good geometry, navi-

gation performance index of magnitude less than

3 may be obtained. On the other hand, as indi-

cated by Inequality (9), a navigation perform-
ance index in excess of 8.5 would result if any

two line-of-sight vectors to GPS satellites are

separated by 30° or less.

An upper bound for the navigation performance

index may be obtained _$

¢ f

It may also be pointed out that because the determinant of

a matrix product is equal to the product of the individual

determinants, and that the determinant of a matrix is equal

to the product of its eigenvalues, one has the relation

=

C-J
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The maximization of ll__d Ii has been suggested as a

I I
convenient GPS selection criterion 3. It is seen from the

above equation that this criterion is equivalent to a maxi-

mization of the denominator of our performance index,

ALGORITHM

An efficient algorithm for the computation of the GDOP matrix

may be obtained by noting the following decomposition of the

measurement partial derivative matrix:

!

- ! !

bT' I
---- I- - -"

C'r ! I

d T i I
I

,_ 4. _b T

I

bT w
I

"r
C. i

0 1
I

i

-I.-

I

l

0
d r' ]iO

I

From this decomposition, the Sherman-Morrison Formula 2 gives

US

(ii)

Let ( f I _ ! k A [ O, , b , c] (12),
I I _ I t
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Then one has, by straight-forward simple algebra,

I
0 1 0 1 I

and

(13.)

z_ _ +hwhere q = f +

_= 1 - dTq,

When H -I is obtained, one may obtain the GDOP matrix as

(HH T)-I (H -1) _ (H -1) . In particular,

Trace (HHT) -I = sum of the squares of the elements of H H

)

Equations (ii), (13) and (14) constitute the algorithm. It

reduces the inversion of the 4x4 matrix HH T to the inversion

of a 3x3 matrix (al bl c) plus the scalar products of sev-
!

eral 3xl vectors. Notice that Eq. (13) may also be obtained

from inverting H by partitioning 2. But the Sherman-Morrison

Formula provides additional flexibility as will be discussed

below.
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An important advantage of this algorithm is that very little

recomputation is required when the fourth GPS satellite is
switched. In selecting the best set of four GPS satellites

from the many possible combinations, a simple combinatorial

test logic may be advantageous. For this purpose, one may

need the flexibility of changing any one of the rows of H.

Although Eq. (14) remains valid provided one interprets the
vectors f, g, and h accordingly, this does mean these vec-

tors have to be recomputed. In that case it is preferable
to use Eq. (Ii) directly instead of Eq. (14). To illustrate

let us assume that for a particular GPS configuration,
H-I=G is already obtained. If the nth (n = i, 2, 3, 4) GPS

Satellite with line of sight vector r is to be replaced by

another satellite with line-of-sight vector p, the new

measurement partial derivative matrix may be written as

gt_

<p-r :o
!

_n is the Kronecker delta (_in=0 for i¢, _in =i forwhere

i = n).

From the above decomposition the Sherman-Morrison Formula

gives us

t+ [p-rJ

The computational economy provided by this equation is ob-

vious.
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APPLICATIONS

I_itively, orthogonal line-of-sight user-to-GPS satellite

configurations are favorable. In three-dimensional space,

it is, of course, impossible to have a set of four mutually
orthogonal unit vectors. An alternative has three of the

.......... , _, c orthogonal. For this case
the vectors f, g and h become the same orthogonal unit vec-

tors as a, b, c and Eq. (14) simplifies to

2 2 2
where dl,d2,d 3 with di+d2+d 3 = 1 are components of the line-
of-sight unit vector d along the orthogonal a, b, c direc-
tions ..... It is of interest to note that for this case the

Navigation Peformance Index depends only on (dl+d2+d3), the
simplest symmetric function of the components of the vec-

tor d. The best performance index of 2.80 is achieved for
dT= (-i,-i,-i)/_. This is the situation that the line of

sight to GPS satellite "d" shows no preference to, but is

directed away from the other GPS satellites, an artificial
but not improbable configuration for an user satellite.
For dT= (i,i,i)/_, i;e., d having the same general direction

as the other three lines-of-sight, the performance index
degrades to 13.20. This degradation reminds us of the state-

ment made earlier about avoiding closely-grouped GPS satel-
lites. For d = -a, i.e. for an user located between two

GPS satellites, the performance index has the value 4.00.

There is reason to think that a GPS constellation with a-d,

b-d, c-d orthogonal may give good navigation performance.
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This may be realized with the set of line-of-sight vectors
/_ c_- C,,,-')l,CJ"_T= (-,,I,,) V7, bT= (f,-f, ,) , - ,

and d T = (i, i, i)/_. However, for this configuration,

the angle between the vector d and any other vector is

-i
cos (2/3), which is comparatively small, and may be undes-

irable from the consideration of the preceeding section.

In_e_d , it follows immediately from Inequality (i0) that

the navigation performance index must be in excess of

9/8 + i/(I - 2/3) = 4_ , a lower bound which may be com-

pared with the exact index of 5.5 obtainable from straight-

forward simple computation. On the other hand, by reversing

the direction of the vector d given above, one has the com-

pletely s_mmetrical configuration that the line-of-sight
-i

vectors are all separated by the same angle cos (- 1/3).

For this configuration one may compute the eigenvalues of

HH T as _i = _2 = k 3 = 4/3 and_ 4 = 4, giving rise

to a navigation performance index

-f,-_(_,').,_ ÷_ "__ _-_ - ,_.o.

Notice that for this configuration,

i. The upper bound for At given in Inequality (7)

is achieved.

2. Any perturbation of the configuration will result

in a decrease in the minimum angle between two

line-of-sight vectors, and therefore a decrease

in kl.
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Thus this configuration maximizes the smallest eigenvalue

of HHT, or equivalently, minimizes the largest eigenvalue
of (HHT)-I. Whether this also happens to be the best con-

figuration remains to be investigated.
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A QLU_DRIIATERALIZED SPHERICAL

OJEE EARTH DATA BASE

F. K. Chan

Systems and Applied Sciences Corporation

6811 Kenilworth Avenue Suite 500

Riverdale, Maryland 20840

ABSTRACT

A Quadrilateralized Spherical Cube has been constructed to

form the basis for the rapid storage and retrieval of high

resolution data obtained of the earth's surface. The structure

of this data base is derived from a spherical cube, which is

obtained by radially projecting a cube onto its circumscribing

sphere. An appropriate set of curvilinear coordinates is chosen
such that the resolution calls on the spherical cube are of equal

area and are also of essentially the same shape.

The main properties of the earth data base are that the indexing

scheme is binary and telescopic in nature, the resolution cells

are strung together in a two-dimensional manner, the cell addresses

are easily computed, and the conversion from geographic to data

base coordinates is comparatively simple.

Based on numerical results obtained, it is concluded that this

data base structure is perhaps the most viable one for handling

remotely-sensed data obtained by satellites. It can be used

either as a data base for individual satellites or as a composite

one for multiple satellites.

This work was supported by Navy Contract No. N66314-74-C-1340.

The author wishes to acknowledge the programming assistance pro-

vided by Michael O'Neill, presently of Dilks Company.
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SECTION 1 - INTRODUCTION

In the numerous satellites presently orbiting the Earth, enormous amounts of

data are continuously taken of the Earth's surface and atmosphere. These

data are of a varied nature: topography, crop distribution, sea surface tem-

perature, cloud coverage, etc. The measurements are used by research and

applications personnel of diverse scientific disciplines. These users usually

employ and Earth-oriented coordinate system, such as the traditional geo-

graphic frame of reference. Thus, it is not surprising that almost all existing

Earth data bases have been constructed with latitudes and longitudes as grid-

lines, either in a patched-up partial fashion or in the entire outlay.

However, what is convenient to the user is not necessarily also efficient from

the standpoint of data management and data processing by the computer. Effi-

ciency is especially important because of the large amounts of data rapidly

acquired in global coverage, the necessity to update data continually for opera-

tional use, and the desire to access directly relatively small amounts of data

corresponding to selected geographic regions at appropriate times.

The high computer overhead encountered in processing can therefore be mini-

mized by designing an Earth data base structure with constant (but selectable)

geometric resolution cells, which are also locally invariant in shape along a

translation in any direction. This would eliminate the necessity to account

for nonequal-area resolution cells, and also the need to compute the location

of every resolution cell in the data base. Moreover, the design should also

utilize a fairly simple transformation between the user-preferred geographic

coordinates and the internal data base coordinates. This would greatly facili-

tate arithmetic and transfer operations desired by the user in mathematical

computations or in graphic display.
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The Quadrilateralized Spherical Cube _1) or the Chan Projection was especially

constructed to form the basis for an earth data base of remotely-sensed satellite data.

In this model, the sphere is visualized as a spherical cube, as illustrated in Figure 1-1.

This spherical cube is obtained by radially projecting the edges of an inscribed cube, as

shown in Figure 1-2.

From Figmre 1-2, it is obvious that equal-area elements on the plane square

do not radially project as equal-area elements on the spherical square. For

example, those elements near the center of the plane square have larger pro-

jections than those elements near the edges of the plane square. Hence, if a

rectangular grid of equal-area elements is first constructed on the plane

square, it is then necessary to distort this grid into a curvilinear network so

that the elements near the center are smaller than those near the edges. The

distortion is such that when the curvilinear elements are projected radially,

equal-area elements are again obtained on the spherical square. The desired

sequence of transformations is illustrated in Figure 1-3 through 1-5. The

mathematical details of deriving these transformations are discussed in

Section 2.

For the present, it suffices to say that it is possible to obtain a world map

such as Figure 1-6. This map illustrates the continental outlines as they

would appear on the cube with the original undistorted rectangular coordinates.

This is accomplished by reversing the sequence of transformations previously

illustrated by Figures 1-3 through 1-5. Thus, in Figure 1-6, equal-area

regions correspond to equal-area regions on the spherical Earth. An examin-

ation of this planar equal-area world map shows that the distortion of the con-

tinental outlines is not as great as might be expected.
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Figure 1-1. Spherical Cube

Figure 1-2. Construction of the Spherical Cube
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SECTION 2 - MATHEMATICAL FORMULATION OF

DATA BASE STRUCTURE

DERIVATION OF DIRECT MAPPING FUNCTION

First, consider a plane surface subtended by a spherical surface with

radius R. Let } be the vector from the center of the sphere to the giveno

plane. As shown in Figure 2-1, let dA be an area element on this plane,
P

and let "_ be the vector from the center of the sphere to the area element

dA .
P

Figure 2-1.

dr" s

r o

Relation Between Plane and Spherical Area Elements

Let dA be the spherical area element obtained by projecting dA radially
s p

onto the sphere. Then, it can be readily shown that the following relation

between dA and dA holds:
p s

3
R 2 cos _ _o)

dA = dA (2-1)
s 2 p

r
o

where denotes the angle between r and r
0
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Let

that

(_ , T}, r ) denote the components of the vector
O

"_. Then, it Iollow_

r r
--_ .-_ O O

COS (r, ro) =-- =

r (r2 2 2)I/2O+_ +'19

(2-2)

Moreover, for convenience, let the unit of length be chosen such that the

radius, R, of the sphere is equal to unity. Then, Equations (2-1) and (2-2)

yield

r
o

dA = dA (2-3)

s (r2+_2+_2)3/2po

Next, consider a cube together with a circumscribing spherical surface. On

each of the six plane faces of the cube, a rectangular coordinate system (x,y)

may be defined, the domain of definition being -r < x , y < r . It may be
O O

easily verified that

1
r = -- (2-4)
o /5-

Let a new coordinate system ($ , n) be defined by

t" =-_ (x, y)

n = 77(x,y)

(2-5)

where _ (x, y) and r/(x , y) are independent arbitrary functions.
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The new area element d_dr] is related to the original area element dxdy by

\x, y/ "
(2-6 )

/.c 'r?\

where J_" ) is the Jacobian of transformation
\X, 3"/

5x 5y

5x by

(2-7)

If this new area element is projected radially onto the surface of the sphere,

Eauatioas (2-3)and (2-6)yield

r

dA -- o '/dxdy

,x,,,s (r 2 + _2 + 3/2 J (2-8)
O\ ,

which relates the spherical area element dA s

dxdy . For original equal-area p!ane elements

area spherical elements dA , it follows that
S

to the original area element

dxdy to transform into equal-

r
o

3/2 _x-_1
(2-9)
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or

(2-1o)

where )2 is a constant.

It is easy to verify that the value of k 2 is equal to the ratio of the area of the

spherical square to the area of the plane square, i.e.,

12 _ 2_/3 _
2 2 (2-111

4r
0

An alternative form of Equation (2-10) is

_X
_v __X ___=2 ÷ +
3y _y _x 2

r
o

(2-12)

whe re

2 = r 2 >2 =_ (2-13)
o 6

2
From Equations (2-7) and (2-12), it is seen that _ may be interpreted as the

area-scale of transformation at the point (_ = 0 , r_ = 0) .
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Equation (2-12) in itself is quite general. It is now desirable to specify the

following general properties for the transformation from (x , y) to (_ , 77) •

1. To preserve symmetry in the transformation Equation (2-5), it is

required that

= f(x, y)

, = f(y, x)

(2-14)

Equation (2-14) states that _ and _ have exactly the same form of dependence

on x and y, except that the roles of x and y are interchanged. Moreover,

s_nmetry preservation also requires that the function f(x , y) be odd in x

and even in y , i.e.,

f(-x, y)=-f(x, y)

f(x, -y) = f(x, y)

(2-15)

As a consequence of Equations (2-14) and (2-15), it is seen that the origin maps

back into itself, i.e.,

f(0, y) = 0 (2-16)

2. To map points on the sides of the square back into points on the

same sides, it is necessary that

f(ro, y) = ro (2-17)
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As a consequence of aLl the above requirements, it may be shown that b____Eand

b_ bY

are zero at the points (0 O) and (r ° ro) Therefore, from Equa-5x ' ' "

tion (2-12), itfollows that

5_ = y = 0. 72360

_x x=0 _: x=0
y=0 y=u

12545 582 (2-18)

bx bY
x--r

o
y--r

O

x--r
o

y--r
O

= _ =_= 1.6494 54166 187 (2-19)

If f(x , y) can be expanded in a power series in x and y , then Equation (2-16)

requires that

2i 2j
f(x,y)=x_ _a. x y

i=o j=o *j
(2-20)

The condition in Equation (2-18) yields

ao0 = .y (2-21)

The condition in Equation (2-17) may be incorporated into f(x , y) by writing

it in the form

2 ) x2i 2jf(x, y) =_x + (1---_)x32 + r o- x 2 x Z b..ij Y
r (i+j)>l
o

(2-22)
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It may be sho_n that Equation (2-12), together with the conditions given by

Equations (2-16) through (2-18), are not sufficient to determine uniquely the

transformation in Equation (2-14). This nonuniqueness fs manifested by the

fact that there are more unkno_ms (bij) than equations when Equation (2-22)

is substituted into Equation (2-12) and terms of the same degree are equated.

Finally, to incorporate the condition in Equation (2-19), it is most efficient to

express f(x , y) in the following form. The details for arriving at this form

are given in Reference 1.

f(x, y) = _/x + (1-7) x 3
2

r
O

2_ (r__)

x_(_o_ _)[_

+ _ y2 2i
o i_o cij x y2

j_o

(2-23)

where

_m

4r 4
0 (2-24)

=0.79048 64491 208

_(_ o)_¢= - 2_/-D- 2r 45

O
(2-25}

= - 1.2254 41487 984
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An approximate mapping function may be obtained by truncating the series

expansion in Equation (2-23) at some degree, and then obtaining the coefficients

c.. and d. which minimize the following residual function:
Ij 1

@(cij, d i)= / r°
-r

o

ro + +
O

- r

o o ,

q_

x _x _Y-_Y _ - dxdy

(2-26)

This residual function is obtained by considering Equation (2-10) or (2-12).

Then, ¢(cij , d i) is evidently equal to zero for the exact transformation func-

tion f(x , y) . For computational purposes, Equation (2-26)is replaced by

¢(cij' di)= X_k y_l It-2 tl + _22+o ro r_2°)2\-3/2

( )12_y _y _x

(2-27)

where the points (x k , yl) are chosen to form a regular grid over the plane

square. A computer software program for performing this minimization prob-

lem is given in Reference 1. For a second-degree approximation of the series

in Equation (2-23), the following values of cij and d.1 are obtained:

COO =-2.7217 05366 1814

Cl0 =-5.5842 16830 5430
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c01 =2.1711 17480 9423

c20 =-3.4578 62747 3390

c11 =-6.4160 15152 6783

c02 = 1.9736 26575 8872

dO =1.4833 12929 4187

dI = 1.1199 72606 9742

d2 =6.0515 38216 1464

The corresponding mapping function f(x , y) is accurate to about five signifi-

cant figures.

DERIVATION OF INVERSE MAPPING FUNCTION

Corresponding to the symmetrical direct mapping function expressed in Equa-

tion (2-14), it may be verified that the inverse mapping function is also sym-

metrical, i.e.,

(2-28)

As discussed in Reference 1, f* (_ , 17) must be expressed in the form

f* (_, _) = 7"_ + (1 - 7") _32
r

o (2-29)

+ 3 2 + 2_ . _2i 1
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where

1

1

#

_'1" = 1
r 4_'+ 5

0

#'/'1" = 1
# + 2r4 5

0

5
1

5" = ('#1" - #*)

2r 4
0

i (__2_.-_-_2r40.)
2r 4 o

O

--TLo_o_ °

(2-30)

An approximate inverse mapping function may be obtained by truncating the

series expansion in Equation (2-29) at some degree, and then obtaining the

coefficients c..* and d.* which minimize the following residual function:
iJ 1

¢*(cij*, di*)= __rr°/rr°l[x-

0 0

f,If_x.y_._y.x_2

-,211/=
(2-31)
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-in obtaining Lm_ i-=,-_uu,_,-u,_,._v,_,............ _-k---_ .......

sidered, as given by Equation (2-23). Then, ¢* (cij , di* ) is evidently equal

to zero for the exact inverse mapping function f* (_ , 77) * Again, for compu-

tational purposes, Equation (2-31) is replace by

(2-32)

A computer soft_-are program for performing this minimization problem is also

given in Reference 1. For a second-degree approximation of the series in Equa-

tion (2-29), the following values of c.. "_ and d.* were obtained:
1j 1

Co0* = 3. 973 89249

Cl0*= 6.591 19476

c01"= -25.368 92536

c20"= -73.064 97000

Cll* =77.381 61133

c02" = 21.685 89623

d * = 1.811 28250
0

dl* =37.635 47857

d2* = 63.000 23655

The corresponding mapping function f* (_ , _) is accurate to about five signi-

ficant figures.
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SECTION 3 - ORGANIZATION OF DATA BASE

The underlying principle in organizing the data base isspecifically related to the binary

division and the stringingpattern discussed below. In this scheme, the process starts at

the level of the faces in the spherical cube, numbering these faces 1 through 6 as in

Figure 3-1.

5

3 2

6

Figure 3-1. Face Numbering Scheme

Each face isdivided, to the requisiteresolution level, by a two dimensional binary grid,

as shown in Figure 3-2. On each level of division,the areas are divided into quadrants,

which are labeled by a 2-bit binary number. Each level of division,k, is indicated by the

addition of two binary bits to the least significant end of a 2k bit binary number. Figure

3-3 illustratesthe indexing scheme corresponding to the third level of division. Suppose

there are n levelsof divisionaltogether. Then, the binary index defines the serial

location of a point in the 2n array.
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LEVELS OF DIVISION

1 2 3

Figure 3-2. Binary Division Scheme

011 11 11 11

> m m m
< < <

m m m

LEVEL

10

00

10 11

10

00 01
I

O0 01

01

Figure 3-3. Illustrative Labeling by Binary Bits
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In comparison to the normal row and column addressingscheme, the present one has the

following advantages:

.

.

Reduction in I/O time through maintenance of near-neighbor rela-

tionships

Compactness of arrays containing addresses

•,,_,,,_,,,_u_c u_ a consistent aduress,ng scheme regardless of reso-

lution level

The serialaddressing scheme reduces I/O time for disk type storage devices because

more near neighbors of a point are within the range which requires no arm motion fo_

accessing. The expression of addresses as a single bit string allows storage of addresses

as single machine words, whereas a two-dimensional addressing scheme would require

two or three words, including one for the face number. Finally, the expandibility and

generality of the serialstringpermit the use at any resolution level without regard to

physical storage considerations, such as record size. Any reasonable matrix type storage

scheme would require a dual (or multiple) level of addresses for record and item within

record location in the serialscheme. This isaccomplished simply by considering the high

order m bitsas the record number, and the low order n-m bits as the address within

record.

Implicit in the manner of binary labeling at each level,itis obvious that one obtains an

ordering pattern whose basic nature isthat of an upside-down Z. Figures 3-4 and 3-5

illustratethe binary indexing and the stringingsequence for the firsttwo levels of

division.
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10 11

O0 01

2 3

0 1

Figure 3-4. FirstLevel of Division

1010 1011 1110 1111

1000 1001 1100 1101

0010 0011 0110 0111

0000 0001 0100 0101

10 - ___15
"X_9 13

0 5
4

Figure 3-5. Second Level of Division
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Next, supposethat a point (or cell) is represented by its rectangular coordinates (x,y).

A little consideration of Figure 3-4 which fiiustrates the basic nature of eachlevel of

division reveals that, in general, the x and y coordinates respectively can only be -

associated with the odd and even bits in the binary index (or serial address)s of the cell,

no matter how many levels of division there are. Furthermore, a more important

property is that the x andy coordinates respectively can be directly obtained by merely

masking out the even and odd bits in the serial address. Conversely, this important

property meansthat if the x andy coordinates are given, then the serial addresss may be

obtained by

1. Representingx andy in binary form of n bits.

2. Expandingthe n-bit format to 2n-bit format by appropriately inserting O in

the even bits for x andin the odd bits for y, as illustrated in Table 3-1.

3. Adding the modified forms for x and y to obtain s.

Table 3-1. Binary Representation of Coordinates

DECIMAL VALUE BINARY

1 1

2 10

3 11

4 100

5 101

6 110

7 .111

X-COOR D I NATE Y-COOR D IN ATE

(ODD) (EVEN)

01

100

101

10000

10001

10100

10101

10

1000

1010

100000

100010

101000

101010
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As an example, consioer the cell (2,3). Thus, from _Iable 3-1, we obtain

x = I0 _ 100

y = 11 _ 1010

s = 100 + 1010 = 1110

which checks with Fi_nJre 3-5.

The calculation of the serial string index may also be accomplished by the con-

struction of a very simple hardware device. This device would consist of

three registers: an x register, a y register, and a s register.

Two register-to-register instructions would provide packing from x , y to

s and unpacking s to x , y. These instructions would initiate parallel trans-

fer from Lhe two n-bit coordinate registers to the 2n-bit serial register and

vice versa. The interconnection is shown in Figure 3-6.

+ BIT 3

T
B,T :3

I B,T_I _,T1 I _,To ix

T T T
_,T :_1 B,T111 _,T I01_

i I ! I 1
_ 141 3 12 IllOlS

Figure 3-6. Transfer Between Registers
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SECTION 4 - CONCLUSIOI_

The main properties of the Quadrilateralized Spherical Cube Earth Data Base are:

,

1

.

,

.

The indexing scheme is binary in nature, and telescopic in the sense

that each additional level of resolution is addressed by appending

additional binary_ bits. Thus, minimal work is needed for indexing

cells of higher resolution.

The resolution cells are strung together in a two-dimensional man-

ner, so as to accomplish area coverage with a serial bit string.

Consequently, a higher degree of proximity is achieved for near-

neighbors in this stringing pattern than in the usual one-dimensional

array of stringing by rows and columns.

The cell addresses are readily computed because of the indexing

scheme which is the same regardless of the resolution level, and

because of the stringing pattern which permits the decomposition

of the cell address into two independent binary indices.

The conversion from geographic coordinates to data base coordin-

ates is comparatively simple because of the simplicity of the data

base structure.

Incoming data can be stored rapidly by interpolation, using bench-

marks only occasionally. This method of fast-fillingis made pos-

sible by the equal-area nature and translational shape invariance

of the data base resolution cells.

Input/output operations with this data base are also simplified

because of the rectangularized nature of the data base records and

the rhombic nature of the interpolation blocks.
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.

6,

The user can rapidly and directly access data corresponding to

specified geographic regions of arbitrary shape and size. This

data-accessing is accomplished bv retrieving the relatively few

bit-strings which lie within the associated data base records. The

rapidity and directness of data access are the result of equal-area

resolution, translational invariance, indexing scheme, stringing

pattern, and relatively simple coordinate transformation.

The primary contemplated uses of the retrieved data are mathe-

matical computations and visual display. For the former, the

equal-area resolution proper_ eliminates the need to distinguish

between density measurements and integrated measurements. For

the latter, the quadrilateralized nature of the resolution cells on

the spherical cube and. the comparative simplicity of coordinate

transformation both simplify and minimize the internal operations.
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ADAPTIVE GUIDANCE AND CONTROL

FOR FUTURE REMOTE SENSING SYSTEMS

James W. Lowriet and John E. Myers t*

Martin Marietta Aerospace

Abstract

Remote sensing missions past the era of LANDSAT D require the dissemination

of high quality image data to users in near real time. Martin Marietta has

developed a unique approach to onboard processing which is directed at this goal.

The first step of this approach was the development of an onboard cloud detection

system which has flown on an aircraft flight test and will fly on the first

Shuttle experimental pallet. The second step of the approach was the development

of a Landmark tracker, which has also been flown on an aircraft flight test.

This paper outlines the results of these two developments and summarizes the

requirements of an operational guidance and control system capable of providing

continuous estimation of the sensor boresight position.

Introduction

All forecasts of advanced technology and the future space mission models

have pointed to massive increases in image data return from spaceborne sensor

platforms designed to provide global monitoring of agriculture, minerals, forest,

and water resources. Concurrently, the user community is requesting high quality

image products in a shorter amount of time. Examination of existing and near-

term mission models reveals that the end to end remote sensing system is ineffic-

ient. Over 50% and closer to 80% of all data acquired by the Landsat series

remains unused due to either undesirable effects such as cloud coverage or dis-

interesting scene content. Also, the turnaround time between data acquisition

and dissemination to the user can exceed two months due to tremendous processing

requirements necessary to correct imagery for distortions. This situation is
intolerable to both NASA and the user community. In summary, two major limita-

tions of existing remote sensing missions are deterministic acquisition of high

quality imagery and the timely correction of imagery for distortions. This paper

outlines an approach to remote sensing which will meet future mission goals by

overcoming these limitiations. The approach is centered around two subsystems.

The first subsystem provides real time classification of features within a scene

so that onboard decisions affecting data acquisition can be made. The second

subsystem incorporates a landmark tracker into a state of the art navigation

system in order to continuously predict the sensor boresight position in earth

fixed coordinates.

tJames W. Lowrie is a senior engineer at Martin Marietta Aerospace, Denver

Division, working in the Advanced Automation Technology area.

ttJohn E. Myers is a Professor of Electronics Engineering Technology at Metro-

politan State College, Denver, Colorado, and consultant to Martin Marietta

Aerospace, Denver Division.
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Deterministic Data Acquisition

In order to solve the problem of acquiring only desirable scenes, it is

necessary to define the features which are desirable or undesirable and then to

develop a system which will automatically classify scenes according to their

content. For remote sensing missions, it is certainly necessary to distinguish

clouds from other features, but it is also desirable to separate others such as

vegetation, bare earth, and water. For example, a mission dedicated to water

pollution monitoring has no desire to acquire bare earth or vegetation scenes.

Therefore, for this application it is necessary to discriminate between water

and other classes. Table I presents a list of mission models and the types of

data selection criteria they might use.

Table I. Data Selection Criteria for Advanced Mission Models

Mission Model Data Selection Criteria

Biomass Estimation

Flood Detection

Forest Fire Detection

Water Pollution Monitoring

Ice Mapping

General Remote Sensing

(Landsat)

Cloud

Vegetation

Cloud

Water

Cloud

Vegetation

Fire

Cloud

Water

Water/Land Interface

Cloud

Snow

Ice

Cloud

The Feature Identification and Location Experiment (FILE) was first con-

ceived in 1976 as the first segment of a truly autonomous remote sensing system

(Ref. I). The experiment, which has flown on an aircraft flight test in early

1980 and is scheduled to fly on shuttle OFT-2, is designed around the concept

that generic classes of features may be separated by spectral signature using

simple algorithms. It is important to note that this experiment eliminates the

need for detailed ground truth information by avoiding the temptation to separate

generic clusters into finer detail. The FILE algorithm utilizes the ratio of

the sensor voltages in two bands centered at .65_m and .85_m. Although the

observed radiance from a feature is a function of its reflectance, incident

illumination, and radiance absorption of the medium through which it is viewed,

the ratio of the radiance at these two wavelengths is reasonably independent of

all factors except reflectance. This principle is the basis of the FILE system

and is the key to avoiding the need for ground truth. Figure I shows how various

feature types can be classified with the algorithm, Water and vegetation can be

separated on the basis of the ratio alone, However, since the radiance ratio
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for bare land is essentially the sameas for clouds and snow, these features
must be separated on the bases of absolute radiance.

Although the FILE experiment has been designed to classify clouds, vegeta-

tion, bare earth, and water, the technique may be extrapolated to other target

types as long as the statistics of the signatures are seperable. For example,

forest fire detection could be implemented using a thermal and visual band.

>

4J

O

> VR/VIR = 0.695

7

Bare /
-- 1.15 V Land/

V R '\

Water /
i

Clouds

Vegetation

I 1
0,

/0 z z 3
Infrared Camera Volts, VIR

Figure I. 99% Confidence Polygons, Sun 41 to 60 Degrees from Zenth

Imase Correction

The advancement of spaceborne processors has made real time correction of

imagery a feasible goal for near-term mission models provided the distortions

can be measured onboard to sufficient accuracy. The primary sources of image

distortion can be separated into sensor peculiarities, viewing perspective, and

spacecraft characteristics (Ref. 2). With the development of linear arrays,

the primary sensor-caused distortions will be the individual placement of
detector elements and the orientation of the array relative to the sensor prior

to flight. Viewing perspective, which is a combination of curvature of the

field of view and look angle geometry, is a slowly varying function
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of local earth radius and can also be considered deterministic over short
intervals. The primary error source remaining, therfore, is spacecraft-caused
distortions. The spacecraft error sources can be catagorized as follows:

Attitude determination

Ephemerisprediction

Misalignment between sensor and body coordinates

Mathematical inaccuracies in inertial to earth
fixed coordinate transformation

These general sources have been broken downin more detail in Table II.

Table II. Spacecraft Induced Error Sources in Temporal Registration

Attitude determination

Star tracker accuracy

Star tracker configuration

Knowledge of star tracker misalignment

Error in star catalogue

Gyro noise

Knowledge of gyro bias, nonorthogonality, misalignment

Numerical accuracy

Ephemeris prediction

GPS accuracy

Numerical accuracy

Misalignment between sensor and body coordinates

Knowledge of linear array or scan mirror orientation

Accuracy of thermal deflection model

Vibration modes between two coordinates

Calibration technique and frequency

Numerical accuracy

Transformation error between inertial and earth fixed coordinates

Knowledge of UTl

Knowledge of earth precession, nutation, polar wander, and
tidal deformation

Numerical accuracy

For the sake of discussion, assume that all the error is due simply to the

attitude determination system. In order to achieve a temporal registration

accuracy of 15 meters, it will be necessary to predict the attitude to within

4 sec as illustrated in Figure II. Accuracy of current state-of-the-art systems

using the NASA standard star tracker and gyro is 15 sec (20) as discussed in the

"Onboard Attitude Determination System" study (Ref. 3).
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Figure II. Error Budget for Registration Accuracy of 15m

0

705km

- 1 15m
= tan 705km

= 4 sec

15m

Even with the advancement of CCD star trackers, the attitude determination

capability will be around 6 sec (20). Note that two sigma numbers have been

used here corresponding to 95% of the data. If a one sigma number corresponding

to 67% of the data is used, the accuracy goal can be met. However, by adding

just one more error term such as a misalignment between sensor and body coordin-

ates of 2 sec (2-axis accuracy achievable with an optical alignment cube), the

total error exceeds the design goal. From the previous discussion, which ignored

many error sources, it is clear that another approach is required.

Solution of the temporal registration problem requires that the sensors

boresight position in earth fixed coordinates be periodically measured. This

can be accomplished using a correlator which registers known Ground Control

Points (GCP) within the sensor data. Onboard registration of GCPs allows many

of the error terms listed in Table II to be accurately estimated in real time.

Shortly after the experimental definition of FILE, Martin Marietta began the

development of a landmark tracker or GCP detector centered around our experience

with terminal guidance systems. The primary function of the landmark tracker is

to provide periodic measurements of the science sensors boresight position to be

used as an input to a navigation system. Previous studies (Ref. 4-7) have shown

that the landmark tracker will not adequately solve for both position and attitude

without supplemental measurements from another source. For this reason the remote

sensing navigation system has been configured with a GPS receiver to provide

position measurements. Another limitation of the landmark tracker operating in

the visual spectrum is that measurements are sometimes obscured by clouds and no
measurements can be taken over water. For this reason, two star trackers have

been added to the configuration to bound the maximum attitude error and to reduce

the convergence time of the state when GCP sightings are acquired. A block

diagram of the navigation system is shown in Figure III.

The registration processor is centered around a Sequential Similarity

Detection Algorithm (SSDA) first identified by Barnea and Silverman (Ref. 8).

Other algorithms were considered, but after significant analysis (Ref. 9), re-

sults indicate that for the advanced Landsat mission model, the SSDA is superior

to other techniques due to its low probability of false lock, time required for

registration, and ease of implementation in a hardwired system.

15-5



GPS
Receiver

I StandardINASAstarTracker 1

Gyro

Package

Science l

Sensor with k

_ointing Moun_

..!

I Navigation 1

Processor*

' GCP I.

Registration_--]

- _---_Data Management

Processor**

Pointing Control 1 I

Downlink

*Navigation Processor

- Vehicle State Solution

- Sensor Boresight

Position Determination

**Data Management Processor

- Data Annotation

- Image Correction

- Sensor Pointing
- Information Extraction

- Telemetry Management

Figure III. GPS Detection System Configuration

15-6



GCP Registration

To perform GCP registration it is not necessary to process imagery from

the entire Field of View (FOV) but only an area whose size ensures the GCP will

be located within its boundary.

Let this search area be defined as an LxL area of digital picture elements.

The image may be defined by a function, S, that describes the gray scale, or

recorded radiance, in relation to position coordinates, i.e.,

S(i,j) = Wi, j

where Wi, j is the gray scale of the i,j th picture element of the search area

1 £(i, j)£ L.

Let the ground control point be defined similarly as an MxM area with an image

function

G(E,m) = RI, m

where RI, m is the gray scale of the l,m th picture element of the GCP

1 £(_, m) i M.

A subimage (Figure IV) of the SA may be defined as an MxM area whose upper left

coordinates (n,o) lie in the range

i !(n, o)! L - M + I.

L
-:_ m

L-M+I M

L L-M+1

M

Point

M

GCP

Figure IV. Subimage Definition

A subimage whose upper left coordinates are n,o will be referred to as the n,o th

reference point.

The sensor data are registered by measuring the similarity between each

MxM subimage within the search area and the representation of the GCP stored

onboard. The reference point that produces the highest degree of similarity

with the GCP is then the best registration of the SA and can be labeled with the

same earth fixed coordinates as the GCP.
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The SSDAalgorithm maybe implemented to detect similarity between a
reference point and the GCPthrough the following equation:

M M
Similarity = _ _

i-I j-1
I (S(i + n, j + 0) - S--n,o) - (G(i,j) -G_

where

Sno _ n,o th reference point,

S--no_ mean value of the subimage located at the n,o th reference point

G _ mean value of the GCP.

The entire registration process can then be described by the algorithm shown

in Figure V.

_ Trlal Positions

Place Stored Landmark ]
in Upper Left Corner [

of Search Area J

'1

Ssquentlslly Shift [

Each Pixsl Pair

from Landmark and

Search Area into

Hardwlred Correlator

Landmark Area

T _° I

X Y,, Y ,
" of I I Shift Landmark Left to Right, l

I I

Figure V. Registration of an Area Landmark

Approache s to automatic registration have typically been limited by the

effect of cloud coverage on accuracy and the inability to detect correlator

false lock. A technique for reducing the effects of cloud coverage was devel-

oped under an independent research project (Ref. 9). The technique incorporates

the FILE classification capability into the correlator so that every pixel

representing a cloud is eliminated from the correlator computation. Results

indicate that the tolerance for clouds within the search area has increased

from 10% to 40%. An algorithm was also developed to detect correlation false

lock. Basically, the algorithm compares the rate of convergence of the correl-

ation surface with the rate of convergence found when the GCP is correlated

with itself. If false lock is detected, no registration vector is passed to

its navigation filter.
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System Model

Under contract to NASA-GSFC, Martin Marietta is currently investigating

the operational requirements of an onboard GCP detection system designed to

meet the goals of accurate image correction. The analysis is centered around

a simulation program which models the environment of the spacecraft, generates

measurements, and estimates the state of the vehicle using an extended Carlson

square root filter. The program was set up to provide analysis of true errors

rather than simply evaluating the covariance matrix. Although the covariance

analysis provides a great deal of information, interpretation of results can be

inaccurate and misleading. For example, there are many cases where the covar-

iance matrix converges over a period of time while the actual state estimate

diverges from the true state. A conceptual diagram of the modeling is shown

in Figure VI.

A_itude Ref_cm
Noim Estimated Bias

Nonorthogonality Nonorthogormlity
Sale SrJle

Body + _

Gym

Eln_mm_

Mi_lignnwnt Misadig_n_nt

+ + -" Filler

TrmckerModel

x_ v÷ +___ GPS Measurement Model _ -----_-

Figure VI. Overview of Measurement Models

_x

The design philosophy behind the measurement models is that the actual

vehicle state is used with a geometry model to yield an ideal measurement

vector. This ideal vector is then corrupted with bias, noise, and misalignment

to provide the actual sensor output. The sensor output is then compensated for

some estimate of the error terms and is used by the filter to estimate the

vehicle state. The benefit behind this design approach is that it enables a
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detailed analysis of sensitivity to misalignments and compensation ability.
It is also expected that the severe requirements associated with onboard image
correction will require the onboard estimate of misalignment terms such as
those between the science sensor and body coordinates. With this approach, it
will not be difficult to modify the filter to solve for these terms. It is
possible to understand the mathematics of most of the measurementmodels simply
by interpreting Figure VI. However, the landmark tracker model is somewhat
more complex and is described more fully here.

The landmark location on the surface of the earth in Local Landmark
Coordinates (Figure VII) will be a function of the altitude (AL) above the
earth's mean radius.

However, in earth fixed coordinates, the landmark will have the earth's mean

radius (YE) added to the altitude. Using the angular transformation from locai

landmark to earth fixed coordinates produces

_E = ETL L_L = ETL[A1 [r--E + CLC% -SL -CLS%] I

0 = (TE + AL) SLC% CL -SLS% l

0 ts_ 0 c_ A

= _E + AL)
LC%[

_J
As shown in Figure VII, the position vector of the spacecraft (Ps/c), when sub-

tracted from the landmark position in some coordinate frame, will provide the

measurement vector (M_).

_I = (ITE L_E) - P_S/CI

Accounting for hardware misalignments, the same measurement vector in landmark

tracker coordinates is:

__£ = £TI [(ITE _E ) - PS/CI)

= _rE L__E- _TI P-S/CI

From examination of Figure Vlll, the unit measurement vector in landmark tracker

coordinates is :

F ,xl lI_u_-- N-_= --

LU£zJ CosAVCosAHJ

However, the tracker instrument has no sensitivity to projections along its

boresight axis. Therefore, the tracker response to the unit vector U£ will be:
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Figure VII

Landmark Tracker Geometry -

Sighting Plan

Figure VIII

Landmark Tracker Geometry -
General
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L j
producing a H and V as shown in Figure VIII as sensor outputs. Since the

sensor output will be corrupted by bias and noise, the sensed measurement will be:

r [ ]Z_£ = H s = AH + bH + vH

LAVs AV + bv + vV

Wb.ere :

bH, bV = Component landmark tracker bias

VH, Vv = Component landmark tracker zero mean random noise, N(O,o 2)

The component biases and standard deviations (o) are user selectables.

The landmark tracker measurement may be compensated for knowledge of instrument

bias. The bias knowledge may be a priori or through estimation. The compensated

sensor output will be:

-
Where:

LM = the landmark being used = f (L, %, AL)

AL = the altitude of the landmark above the mean radius of the earth

L = longitude of the landmark

% = latitude of the landmark

L = vector position of the landmark relative to the center of the earth

_S/C = vector position of the spacecraft relative to the center of the earth

AS/C = altitude of the spacecraft above the mean radius of the earth

M = measurement vector from the spacecraft to the landmark

U = unit vector along M

AH = the landmark tracker horizontal place angular deflection from the

boresight axis

AV = the landmark tracker vertical plane angular deflection from the

boresight axis

The dynamics model calculates the derivative of the spacecraft navigational

state, which will be integrated to produce the navigational state vector. This

is done in part by calculating the total acceleration of the spacecraft due to

solar pressure and gravitation effects of the sun, moon, and earth, including

fourth zonal harmonic terms. The total acceleration of the spacecraft can be
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found by solving the following simultaneous equations:

X1 = -Xl" R--_+ gl(t,X) + al(t,X)

X2 = -X2" _ + g2(t, X) + a2(t,X)

X3 = -X3" _ + g3(t, X) + a3(t,X)

where

X = (Xl, X2, X3)T

= earth gravitational constant (3.98549120E+ 14m3/sec2)

R = (x2 + x2 + x )½

X I, X2 _ X 3 = coordinates of spacecraft

gl, g2, g3 = accelerations caused by zonal harmonics of earth gravity

a 1, a2, a 3 = solar radiation pressure perturbations, sun and moon gravity

The position state is advanced in time by numerical integration of the

equations of motion consisting of external forces acting on the spacecraft.

Analysis of various integration algorithms has shown that the Runge Kutta Gill

4th order numerical integration method is optimal for this application. It is

self-starting, handles variable step sizes, and is sufficiently accurate. The

Runge Kutta Gill method for numerically integrating differential equations is
described here:

The change in the value of the function during the computing interval

is calculated by

1
Ay = _ (kI + 2(l-p)k 2 + 2(l+p)k 3 + k_)

where

kl = h'f(tn, Yn) P =

k 2 = h. f(tn + ½h, Yn + ½k )

k3 = h.f(tn + ½h, Yn + (-½+U)kl + (i - P)k2)

k 4 = h.f tn + h, Yn - pk2 + (I +p)k3)

h = computing interval (seconds)

tn = time of beginning of computing interval (seconds)

Yn = value of function at beginning of computing interval

The derivative function f is evaluated four times to calculate the change

in the function being integrated during the computing interval.

Software Simulation

A Ground Control Point Simulation (GCPSIM) program has been configured to

provide scientific simulations to predict the performance of the GCP detection

system over a wide range of circumstances. Figure IX is a flow diagram of the
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simulation. GCPSIMhas been designed to provide the ability to analyze the
effect of various measurementsequences. This is especially important when
studying the effect of GCPspacing, missed GCPsightings, and the expected
accuracy after traversing a large body of water. The measurementsequencer
designed for GCPSIMallows any mixture of GCP,GPS,or star tracker measure-
ments and time delays (periods during which no measurementswere made) of any
length. The sequencer will determine the type of measurementand the time at
which the measurementshould be made. The true vehicle position state is then
propagated forward to this time by integrating the nonlinear equations of motion
with someadditional process noise to account for modeling errors. The attitude

state is propagated by looking up the body rates in an attitude profile table

and integrating these rates.

The true vehicle state is used along with a measurement model to generate

an ideal measurement vector. The ideal measurement is then corrupted with

noise, bias, and misalignment terms and compensated for knowledge of these

values, This allows a careful analysis of the effect of misalignment on the

state solution. It is important to understand the effect of bias and misalign-

ment between the landmark tracker and body axis because this is the largest

unknown factor contributing to a pointing error. It is possible to calibrate

the system for these misalignment errors, but it is difficult to model, for

any length of time, the various processes which cause the misalignment. For

example, thermal gradients across the vehicle and vibrational modes within the

flexible structure are complex functions of such things as structural design,

sun angle, physical properties of the material, and many other factors. These

processes are the most difficult and least understood of all engineering prob-

lems. Therefore, significant emphasis will be placed on analyzing their effect

on pointing accuracy.

The compensated measurements are used as inputs into an extended square

root Kalman filter, which estimates the true vehicle state. The extended filter

propagates the estimated navigation state, the state transition matrix, and the

process noise array between measurements by integrating the various differential

equations using a fourth order Runge Kutta Gill process. The estimated attitude

state is propagated by a gyro model which corrupts the output with gyro drift,

noise, nonorthogonality, scale factor, and misalignment. The gyro output is

compensated, in a similar fasion to the measurement model, by subtracting off

knowledge of these values.

The estimated state is used to form an estimated measurement which in turn

is subtracted from the true measurement to obtain a residual. It is this

measurement residual and a calculated Kalman gain which are used to update the

state estimate. By comparing the state estimate with the true state, a direct

error analysis can be performed. The entire process continues until the space-

craft is propagated forward to the run stop time.

GCPSIM has been designed to allow maximum flexibility in the analysis of

an onboard landmark tracker. Types of analyses to be performed under the con-

tract are indicated in Table III.
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Table III. Detailed Breakdown of Analysis

- Sensitivity to:

- Accuracy given:

- Rate of Convergence:

- Rate of Divergence:

- Ability to solve for:

sensor accuracies

sensor misalignment

GCP sighting frequencies

GCP location in FOV

knowledge of gyro bias, noise, non-

orthogonality, misalignment

knowledge of earth fixed coordinates

measurement sequence

1/10th pixel correlation

1 pixel correlation

backup system (star tracker)

after using backup

using 1/10th pixel correlation accuracy

using 1 pixel correlation accuracy

when missing GCP sightings

sensor misalignment
earth fixed coordinates

Summary

Development of a new generation of remote sensing systems has become a

necessity for both NASA and the user community in order to fulfill the goals of

future missions. In the past there has been a lack of coordination between the

scientific user community and the engineers responsible for spacecraft design.

This has resulted in a physical separation between the design and implementation

of the science payload and the control system. This design philosophy must

change if the future mission requirements are to be met,

The primary emphasis in the guidance and control system must shift from

simply estimating the ephemeris and attitude of the spacecraft to estimating

the position of the science sensors FOV on the earth's surface. This shift of

emphasis will impact the design of the entire spacecraft, For example, if the

science sensor is to be used as a primary attitude sensor, it is desirable to

place the gyro package in close proximity to that sensor in order to reduce the

misalignment between the two. This suggests that the current Multi_-Mission Space-

craft (MMS) configuration, which provides a physical separation between the pay-

load and the guidance and control system, will not satisfy the requirements of

many future remote sensing missions.

Martin Marietta, under contract to NASA GSFC is developing an approach to

remote sensing missions which eliminate the separation between the science in-

strument and the guidance and control system. Preliminary results obtained in

the analysis of this system show great promise for automation of the end_to-end

remote sensing process.
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THE RESURRECTION OF LANDSAT-2

ATTITUDE CONTROL SYSTEM (ACS)

Peter S. Hui

Goddard Space Flight Center

ABSTRACT

The yaw control reaction wheel in LANDSAT-2 failed in November, 1979. Attempts were
made to maintain attitude control using magnetic and gravity-gradient torque commands from

the ground. However, before definitive results could be obtained, the wheel decided to revive

itself in May, 1980, and the ACS lived happily ever after.
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DOUBLY-PERIODICORBITSIN THE
SUN-EARTH-MOONSYSTEM

R. FarquharandD. Muhonen
GoddardSpaceFlightCenter

and
D. Dunham

ComputerSciencesCorporation

ABSTRACT

A seriesof periodicorbitsin theEarth-Mooncircularrestrictedproblemof threebodieshas
beenfoundwhichis ideallysuitedfor exploringtheEarth'sgeomagnetictail. Themeanapsidal
motionof thebasichighlyellipticalEarthorbit ismaintainedat aboutonedegreeperdayby a
sequenceof lunarswingbys,keepingtheapogeesin theanti-Sundirection. Hence,theorbitsare
periodicin referenceframesrotatingat both lunarandsolarrates.Apogeedistancesarealternately
raisedandloweredby thelunarswingbymaneuvers.Severalcategoriesof these"Sun-synchronous"
doublelunarswingbyorbits are identified. The strength and flexibility of this new trajectory

concept is demonstrated with real-world simulations. A large variety of trajectory shapes can be
used to explore the Earth's geomagnetic tail between 60 and 250 R E . Some of these orbits will be

shown in a movie. NASA plans to use this technique during its proposed four-spacecraft program

called Origins of Plasmas in the Earth's Neighborhood (OPEN). More details can be found in AIAA

Paper 80-0112, "A New Trajectory Concept for Exploring the Earth's Geomagnetic Tail."
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The following plots are a representative sample of the many existing

types of these doubly-periodic orbits. The gravity model employed consisted

of the Earth and Moon point masses, and the Moon's orbit was assumed to be

circular. A patched-conic method was used for orbit computations. All

trajectories are in the moon's orbital plane, and a projection of the Sun-

Earth line is shown as a fixed reference. A classification scheme is used

whereby each periodic orbit is specified by four numbers, [A, B, C, D],

whe re:

"A" is the approximate number of months between lunar swingbys in

the inner segment.

"B" is the number of complete circuits (apogees) in the inner segment.

"C" is the approximate number of months between lunar swingbys in

the outer segment.

"D" is the number of complete circuits (perigees) in the outer segment.

"D" equals zero with most orbits applicable to magnetospheric studies, so

these are specified by only three numbers, [A, B, C]. For "D" larger than

zero, the orbits become butterfly shaped, with the spacecraft spending most

of its time far from the anti-Sun line outside the geomagnetic tail. For

"C" greater than 3 and "D" equals zero, the outer loop extends well beyond

the Sun-Earth L2 libration point, where strong solar perturbations make the

restricted Earth-Moon model unrealistic.
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ATTITUDE GROUND SUPPORT SYSTEM FOR

THE SOLAR MAXIMUM MISSION SPACECRAFT

Dr. G. Nair

Computer Sciences Corporation, Silver Spring, Md.

ABSTRACT

The SMM Attitude Ground Support System (AGSS) supports the

acquisition of spacecraft roll attitude reference, performs

the in-flight calibration of the attitude sensor complement,

supports onboard control autonomy via onboard computer data

base updates, and monitors onboard computer (OBC) performance.

Initial roll attitude acquisition is accomplished by obtain-

ing a coarse 3-axis attitude estimate from magnetometer and

Sun sensor data and subsequently refining it by processing

data from the Fixed Head Star Trackers. In-flight calibra-

tion of the attitude sensor complement is achieved by proc-

essing data from a series of slew maneuvers designed to

maximize the observability and accuracy of the appropriate

alignments and biases. To ensure autonomy of spacecraft

operation, the AGSS selects guide stars and computes sensor

occultation information for uplink to the OBC. The onboard

attitude control performance is monitored on the ground

through periodic attitude determination and processing of

OBC data in downlink telemetry. In general, the control per-

formance has met mission requirements. HoweVer, software

and hardware problems have resulted in sporadic attitude

reference losses.
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i. INTRODUCTION

The Solar Maximum Mission (SMM) spacecraft, first in the

Multimission Modular Spacecraft (MMS) series, was launched

on February 14, 1980. Seven payload instruments located in

the SMM observatory study a large variety of solar-flare-

related phenomena at the peak of the ll-year sunspot cycle.

A s'_T_ary vA=_ _ =_=_ .......al _j ....... of SM_M is given _"

NASA GSFC (Reference i). The SMM spacecraft components are

shown in Figure I. The attitude control objectives of SMM

are to point the roll axis as defined by the experimenters

as a result of coalignment to any point on the Sun's disk

with an accuracy of ±5 arc-seconds and to maintain roll ref-

erence about the roll axis accurate to 0.i degree. A compre-

hensive summary of the attitude determination and control

functions as well as the attitude accuracy requirements for

SMM are given by Guha (Reference 2). Notice, however, that

the primary (roll) axis reference has been changed since then

from the FPSSI boresight to the experimenters' coalignment

direction.

Ground attitude support for SMM is provided at the Goddard

Space Flight Center (GSFC) by the Attitude Determination a_d

Control Section (ADCS) and Computer Sciences Corporation.

The major support functions are

• Acquisition of roll reference about the payload

roll axis

• In-flight calibration of the attitude sensor com-

plement consisting of two 3-axis magnetometers

(TAMs), three 2-channel inertial reference units

(IRUs), two Fine Pointing Sun Sensors (FPSSs), and

two Fixed Head Star Trackers (FHSTs)

• Support of autonomous spacecraft operation under the

control of an OBC for a period of up to 3 days
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• Verification of the OBC attitude determination and

control performance

This paper presents a broad overview of the ground support

software and discusses the performance of the spacecraft

attitude system and sensors in the postlaunch period. The

relationship between OBC processing and the corresponding

ground support is described. Contingencies and anomalous

situations encountered during the postlaunch period are also

presented.

2. FUNCTIONAL OVERVIEW OF THE SMM AGSS

The sensor configurations, coordinate systems, attitude ac-

quisition, and sensor calibration algorithms used in the

ground processing are described in detail in Reference 3.

Descriptions of the algorithms for onboard attitude control

are given by Markley (Reference 4). A functional block dia-

gram illustrating the relationship between onboard and ground

attitude processing is given in Figure 2.

Table 1 summarizes the major functions of the various com-

ponents of the SMM AGSS. The software is operational on the

IBM S/360 computer system at GSFC. The spacecraft telemetry

data are processed in an interactive environment to monitor

the health and safety of the spacecraft and to quality-

assure the performance of the onboard attitude determination

and control system.

3. SMM AGSS PERFORMANCE IN THE POSTLAUNCH PERIOD

The performance of the ground attitude system is discussed

in this section.
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O8/L69L

UJ
.J
CD
<
I--

LU
.J
03

¢/3
LU
0

rr
LU

t.,g

O.
LU

n"

<On
I-- w
¢/) ...I
LUg3

5_
(3

T

n.. o'3
0_
I--Z
<<

_g
-p

_ 0_-

oo

I
Z

t_l--
Q<
_Z

I--i_

0

Z

0

ee

wl-O

<

'r

I
"0 Z_-<_
_<_--_
z_
w_u

I

I

Z n- n- _

uj_lu

uJ

o_

0
_n
o

Z
0

Z h-

QQOQ 00

r_
Z

<"-0

o

Z
0

u_ 0

u- C0 u.
7-

0

z_Z
01"---
--_ol-

1

'Jlt

Z

--b"
n uJ

0

o_oo

_o

t_

t_

-,'4

,._
o
0

t_

0
-,-i

0

01

b9
0
0
0

0

_3

'-0

0

0

C',l

o

19-5



Table i. SMM Attitude Ground Support System

PROGRAM FUNCTION

SMM/ADS

SMM/DMS

SMM/GSOC

SMM/DUTGP

SMM/FGDU

SMM/FOCS

DETERMINES COARSE ATTITUDE TO AN ACCURACY OF 2 DEGREES FROM SUN AND
MAGNETOMETER DATA. DETERMINES FINE ATTITUDE WITH SUN DATA TO AN
ACCURACY OF BETTER THAN 5 ARC-SECONDS. DETERMINES FINE ATTITUDE WITH
FHST DATA TO AN ACCURACY OF APPROXIMATELY 30 ARC-SECONDS. PERFORMS
INITIAL ATTITUDE ACQUISITION AND SUPPORTS THE IN-FLIGHT CALIBRATIONS OF
FHST, IRU, AND FPSS.

PERFORMS SENSOR AND OBC TELEMETRY DOWNLINK DATA MONITORING.

SELECTS SUITABLE GUIDE STARS AND COMPUTES THEIR POSITIONS AND
INTENSITIES IN THE FHST FIELD OF VIEW. PREDICTS OCCULTATIONS OF FHST AND
FPSS BY THE EARTH, MOON, AND SOUTH ATLANTIC ANOMALY.

CONVERTS ENGINEERING DATA ON SENSOR CALIBRATION, GUIDE STARS, AND
OCCULTATION PREDICTIONS INTO APPROPRIATE TABLE FORMAT FOR UPLINK TO THE
ONBOARD COMPUTER.

CALCULATES KALMAN FILTER GAIN MATRICES, CONTROL AND PROPAGATION
MATRICES FOR ONBOARD ATTITUDE DETERMINATION AND CONTROL ESTIMATION.

CALIBRATES THE FPSS IN THE OFF-NULL REGION. A NONLINEAR CALIBRATION
CURVE IS FITTED TO THE FPSS DATA BY MINIMIZING THE RESIDUAL DIFFERENCES
BETWEEN THE FPSS PITCH AND YAW ANGLES AND THE CORRESPONDING GYRO
REFERENCE ANGLES. THE CALIBRATION ACCURACY IS BETTER THAN 2 ARC-
SECONDS.
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3.1 INITIAL ATTITUDE ACQUISITION

Immediately after the launch, spacecraft control was under

the safehold mode, in which data from the Coarse Sun Sensors

(CSSs) were used to point the observatory roll axis to the

Sun to within approximately 2 degrees. The spacecraft was

placed under OBC control approximately 24 hours after launch.

During this mode, the spacecraft was in an almost inertial

orientation (the spacecraft roll axis tracks the Sun and,

hence, moves approximately 1 degree per day) and data from

the star trackers and IRU were available to determine 3-axis

attitudes.

The primary procedure proposed for initial roll attitude ac-

quisition consisted of two steps. In the first step, a

coarse roll attitude is determined using the SM_/ADS sub-

system. The coarse roll attitude, accurate to ±2 degrees,

initializes the second step, fine roll attitude determina-

tion. The SMM/ADS computes fine roll solutions with an

accuracy considerably better than the 0.l-degree mission re-

quirement.

Several attempts to acquire fine roll attitude using the

primary procedure were unsuccessful. Analysis showed that

this was due to a misunderstanding in the definition of the

star tracker coordinate system. This was verified by a

careful analysis of the star motion in the camera fields of

view during small slew maneuvers. After some investigation,

the appropriate FHST documentation (Reference 5) was received

and the correct tracker coordinate definition was estab-

lished. The spacecraft roll attitude was established imme-

diately thereafter.
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3.2 SENSOR CALIBRATIONS

The in-flight calibrations of the attitude sensors are dis-

cussed in this subsection.

3.2.1 MAGNETOMETER CALIBRATION

The accuracy of coarse attitude determination is greatly

improved by the in-flight determination of magnetometer

biases. Magnetometer biases are determined by minimizing,

in a least squares sense, the differences between the meas-

ured magnetic field magnitudes and those computed from a

reference geomagnetic field model. The bias determination

algorithm assumes that the magnetometer triad is orthogonal.

It is of some interest to know the stability of these biases.

The results of a long-term study of the SMM magnetometer

biases are shown in Table 2. The bias B appears to be
x

relatively stable and much larger in magnitude than the other

biases; B and B are small but seem to reflect large fluc-
y z

tuations compared to their magnitude. This study indicates

that to compute accurate attitudes, it is necessary to re-

determine the biases at the time of attitude determination.

Table 2. Magnetometer Biases and Roll Attitudes

TIME
(YYMMDD.HH)

800503.21

800514.17

800516.17

800520.17

800522.17

800526.18

800529.17

800604.12

MAGNETOMETER BIASES
(MILLIGAUSS)

B
X

-66.4

- 72.9

- 70.6

- 85.2

-80.9

-68.6

- 72.9

- 75.4

B
Y

-23.2

-6.6

-5.4

3.3

- 1.5

3.3

14.6

1.7

B
Z

-18.5

-5.1

-2.7

3.8

22.3

0.6

-16.6

18.9

COARSE
ROLL

ATTITUDE
(DEGREES)

-8.9

0.5

1.8

-0.9

13.1

0.4

2.1

1.6

TRUE
ROLL

(DEGREES)

-7.8

0.0

0.0

0.0

12.7

0.0

0.0

0.0
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It is believed that large, variable, uncompensated residual

dipoles in the spacecraft contribute to the magnetometer
biases. (SMMdepends on the interaction between the geomag-

netic field and torquer coils for momentum management.) How-

ever, the study also showed that the biases are relatively

stable over a period of time of the order of a few orbits,

and that reliable biases and coarse attitudes can be obtained

if representative data points covering an entire orbit are

processed. It is apparent from the results summarized in
Table 2 that the accuracy of the coarse attitude determina-

tion is approximately 2 degrees when magnetometer biases are

properly accounted for.

3.2.2 FHST/IRU/FPSS CALIBRATIONS

The S_iMattitude sensors are calibrated so as to be consist-

ent with each other. The FHST alignments and biases are

determined using the output from the highly accurate FPSS.
Attitudes determined from the calibrated FHSTs are then used

to calibrate the IRUs. Finally, the off-null response of the

FPSS is calibrated with reference to the IRUs.

It was noted during the early postlaunch period that the

observed star separations in a given star tracker were dif-
ferent from the corresponding catalog star separations by as

much as 35 to 90 arc-seconds. Moreover, attitudes deter-

mined from star data differed by as much as i00 arc-seconds

from the FPSS reference attitudes. Consequently, an attempt

was made to adjust the star tracker scale factor to reduce

this discrepancy. Satisfactory results were obtained after

this adjustment, which resulted in closer agreement with FPSS-

measured attitudes (to within approximately 30 arc-seconds).

A detailed account of the FHST alignment calibration as well

as refinement of the prelaunch scale factors is given in

References 6 and 7.
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The IRU scale factor correction/alignment matrix and the

3-axis drift rates are determined by minimizing, in a least

squares sense, the differences between IRU-propagated at-
titudes and the attitudes calculated using star and Sun data.

There has been relatively little change in the IRU alignment

in the postlaunch period. However, because of the failure

of one of the three gyros, the primary gyro configuration

was changed on September !t !980_ A detai ]_ _,_+ of the

SMM IRU calibration is given in Reference 6.

The coefficients of the FPSS digital-to-analog nonlinear

transfer function were determined by minimizing the resi-

duals between the changes in pitch and yaw angles computed

from FPSS measurements and the corresponding reference at-

titude changes obtained from IRU measurements of slew maneu-

vers executed to cover the FPSS field of view (References 6)

and 8). The FPSS calibration accuracy was better than

1.2 arc-seconds in all instances. However, some degradations

were observed in the FPSS, as discussed in the next sub-

section.

It is believed that the overall fine attitude determination

accuracy with calibrated star tracker data is approximately

30 arc-seconds each in roll, pitch, and yaw, and with cali-

brated FPSS data is better than 5 arc-seconds in pitch

and yaw.

3.2.3 RECALIBRATION OF FINE POINTING SUN SENSORS

Attitudes measured with FPSSI and FPSS2 have been monitored

regularly during the postlaunch period. As shown in Figure 3,

the telemetry transfer function of the FPSS has been slowly

changing with time, especially in the off-null region. To

reduce the impact of these degradations and to ensure that

the pitch and yaw pointing accuracy requirements are met,

FPSS recalibration activities are being conducted on a

regular basis.
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Slew data to calibrate the FPSS were collected on March 4,

June 21, July i0, August i, and August 25, 1980. The first
set of FPSS calibration parameters was uplinked on March 18,

1980. The second set of refined FPSS calibration parameters

was uplinked with the new OBC flight software (version 13h)

on July 31, 1980.

FPSS 1

CHANGE IN RESPONSE
3/05/80 -- 8/25/80

20-

10-

-12 -8 --4 0

/
_ -2o-

/
/ _ Y{8]'25) -- Y(3/05)

40

30

/ 4 8 12

I"_',_ ='--< X _10 IO0 CO U N .r S I

k
\

-30- X

k
--40- \

k
--5O

Figure 3. Change in Response of FPSS1 with Time as

Measured by the Telemetry Function in the

Field of View

3.3 GUIDE STAR SELECTION

The difference between the observed and predicted positions

of the guide stars in the star tracker field of view is used
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by the SMMcontrol system to estimate the drift rates of the

roll axis gyros. The major criteria used for the selection

of guides stars are the following:

• Stars must remain within the FHST field of view dur-

ing the entire period (nominally 3 days).

• Because of the finite size of the search area in the

field of view, the star must be isolated within a

fixed angular region (nominal tolerance of 1.15 de-

grees vertically and i.i0 degrees horizontally).

A more detailed account of the guide star selection criteria

is given in Reference 6.

It was known from prelaunch studies that there would be

periods of guide star scarcity during the SMM mission life-

time. Relaxing the criteria mentioned above to reduce the

duration of the period to approximately 2 days and/or reduc-

ing the near-neighbor tolerance window slightly have worked

successfully during most of these periods. In one instance

(September 18, 1980, through September 23, 1980), it was nec-

essary to change the nominal null roll attitude to -90 de-

grees in roll to guarantee the availability of guide stars.

It was also observed during the mission that the intensity

responses of the trackers were somewhat different from those

indicated by prelaunch calibrations. Thus, an in-flight in-

tensity calibration of the trackers was performed (Refer-

ence 6), which resulted in more reliable guide star acquisi-

tions by the OBC.

3.4 OCCULTATION PREDICTION

FPSS occultation predictions were biased to shorten the orbit

day to avoid erroneous triggering of the attitude acquisi-

tion mode during day/night or night/day transitions.

similar procedure was adopted for FHST occultation predic-

tions to prevent bad data from being processed by the OBC.
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In general, no problems were encountered in the occultation

prediction function. No measurable star data degradation was
observed during the periods when the spacecraft passed

through the regions of South Atlantic Anomaly.

4. SMM OBC PERFORMANCE MONITORING ON THE GROUND

4.1 PITCH/YAW POINTING CONTROL

Pitch and yaw pointing accuracy of the SMM observatory are

frequently monitored. The results of a pitch/yaw slewing

accuracy verification test, conducted with data taken on

June 26, 1980, are presented in Table 3. It can be clearly

seen that the relative slewing accuracy of the SMM control

system using calibrated gyros and FPSS is within the accuracy

requirements of 5 arc-seconds for the mission.

Table 3. SMM Control System Slewing Accuracy

Verification

I
TIME (800626) ._PITCH (ARC-SECONDS) IPITCH ERROR

(ARC-

START STOP SECONDS)

0.083830

0.084028

0.084427

0.084824

0.085225

0.083859

0,084109

0.084516

0.084918

0.085312

FPSS1 GYRO

-485.6 -486.3

822.7 821.8

-1641.2 -1640.5

1641.3 1644.8

-822.8 -820.4

0.7

0.9

0.7

3.5

2.4

TIME (800626) .%YAW (ARC-SECONDS) YAW ERROR
(ARC-

START STOP FPSS1 GYRO SECONDS)

0.083928

0.084226

0.084628

0.084002

0.084258

0.084717

483.0

782.0

-1602.0

481.4

781.1

-1602.6

1.6

0.9

0.6

O
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4.2 ROLL POINTING CONTROL

The roll reference accuracy is well within the 0.l-degree

mission requirement. Roll control has been maintained

throughout, except on the occasions mentioned in Section 4.4.

Roll slewing accuracy has also been monitored on the ground.

For example, using calibrated gyros for a commanded roll of

90 ; ........_9_ u,i august i, 1980, the measured roll attitude dif-

ference was 89.98 degrees. Thus, the roll slew error is

0.02 degree--well within the 0.l-degree roll accuracy limit

of the mission.

4.3 OBSERVATION OF A SPACECRAFT CONTROL ANOMALY NEAR ORBIT
DUSK

A spacecraft control anomaly was observed at approximately

i0 minutes before orbit dusk on June 30, 1980, when the gyros

indicated a pitch change of approximately i0 arc-seconds

while the pitch output from FPSSI remained steady. Results

from an extensive search of data dating back to the immediate

postlaunch period summarized in Table 4 indicated that a

probable cause of this problem could be the degradation of

FPSSI data due to the reflection of Earth albedo from a

thermal vent, and the subsequent attempt by the onboard con-

trol system to compensate for this degradation by slewing

the spacecraft.
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Table 4. SMM Pitch/Yaw Control Anomalies Near Orbit Dusk

MAXIMUM FPSS2 MAXIMUM GYRO
TIME OF MAXIMUM ROLL ANGLE DEVIATION DEVIATION

QRBIT DAWN GYRO SLEW FROM ORBIT (DEGREES)
(YYMMDD.HHMM) DAWN (MINUTES) (ARC-SECONDS) (ARC-SECONDS)

0.6 (PITCH) 7.2 (PITCH)

1 (PITCH)

800223.1710

800327.1832

800429.1941

800522.2044

800527.1902

800606.1703

800614.1520

800630.1801

800708.1744

800709.1741

56

54

54

55

52

59

58

54

53

54

0

0

0

-12

0

180

-90

0

0

0

0.2 (PITCH)

0.3 (PITCH)

0.5 (YAW)

0.2 (YAW), 1.3 (PITCH)

1.5 (PITCH)

1 (PITCH)

1 (PITCH)

10.4

5.4 (PITCH)

3.6 (PITCH)

7.2 (PITCH)

3.6

10.4 (PITCH)

79 (PITCH)

An operational workaround for this problem was devised by

increasing the FPSS occultation times duration in the OBC

data base so that during the projected periods of potential

anomalies, the control system enters the night mode--gyro

reference--of control.

4.4 SPACECRAFT CONTINGENCIES

During the period from April 4, 1980, to September i, 1980,

the spacecraft lost attitude control 14 times. Guide star

losses and OBC gyro drift update software problems caused

half of these spacecraft contingencies. The remaining were

directly attributable to other OBC problems. Table 5 gives

a brief summary of these contingencies. Additional informa-

tion is available in Reference 6.
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5 • CONCLUS IONS

The major conclusions based on the ground attitude support

activities for SMM are as follows:

• Coarse attitude solutions accurate to within ±2 de-

grees were obtained from CSS and magnetometer data

corrected for magnetometer biases that were deter-

mined for the particular data interval. These

biases have shown appreciable time dependence.

• Fine attitude solutions accurate to approximately

30 arc-seconds were obtained with calibrated star

tracker data. Pitch/yaw attitude solution accuracy

was better than 5 arc-seconds using calibrated

FPSSs.

• Star data sampling frequency (approximately

15 data points per minute) was comparatively low.

The number of data points collected for each star

varied from 4 to 15. The higher number of data

points yielded better attitude estimates.

• In general, the guide star selection function worked

very well. Periods of guide star scarcity were an-

ticipated in advance and dealt with successfully.

• The sensor occultation function worked satisfacto-

rily. Predicted periods were usually within 15 sec-

onds of observed periods.

• Sensor calibration functions were performed re-

liably; self-consistent and accurate calibration

parameters were generated. Overall pointing ac-

curacy using calibrated sensors was better than

3.5 arc-seconds in pitch and yaw and better than

0.05 degree in roll.
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IN-FLIGHT CALIBRATION AND PERFORMANCEEVALUATION

OF THE FIXED HEAD STAR TRACKERSFOR THE SOLAR

MAXIMUMMISSION

Dr. Richard H. Thompson
Computer Sciences Corporation, Silver Spring, Md.

Dr. Pascal J. Gambardella

Computer Sciences Corporation, Silver Spring, Md.

AB STRACT

The Solar Maximum Mission (SMM) spacecraft, which was

launched on February 14, 1980, provides an excellent oppor-

tunity for evaluating attitude determination accuracies

achievable with star tracking instruments such as the Bail

Brothers Research Corporation (BBRC) Fixed Head Star Trackers

(FHSTs). SMM carries as a part of its payload a highly ac-

curate Fine Pointing Sun Sensor (FPSS). The FPSS provides

an independent check of the pitch and yaw parameters com-

puted from observations of stars in the FHST field of view.

This paper applies a method to determine the alignment of

the FHSTs relative to the FPSS using spacecraft data. Also

presented are two methods that were used to determine dis-

tortions in the 8-degree by 8-degree field of view of the

FHSTs using spacecraft data. Finally, an evaluation is made

of the attitude determination accuracy performance of the

in-flight-calibrated FHSTs.

i. INTRODUCTION

Two NASA standard Fixed Head Star Trackers (FHSTs) were flown

on the Solar Maximum Mission (SMM) spacecraft, which was

launched on February 14, 1980. The FHSTs, manufactured by

the BBRC Aerospace Systems Division, are electro-optical

devices that use an image dissector to search for and track
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stars in an 8-degree by 8-degree field of view. The SMM

provides an excellent opportunity to evaluate the attitude
determination accuracies attainable with the FHSTs. In-

cluded in the SMM payload is a highly accurate Fine Pointing

Sun Sensor (FPSS), which provides an independent check of

the pitch and yaw parameters computed from the stellar ob-

servations made by the SMM FHSTs. Two types of error are

chiefly responsible for degrading the accuracy of attitude

solutions based on FHST data. Uncertainty in the position of

an observed star results from distortion of its image by

electro-optical irregularities over the star sensor's field

of view and by temperature, magnetic field, and star inten-

sity effects. Errors of this type are predictable and can be

compensated for by careful calibration of the star cameras

on the ground. Uncorrected star camera misalignments are a

second source of systematic errors in attitudes computed

using star sensor data. Misalignment errors typically are

eliminated by appyling to FHST data biases estimated by

comparing attitudes determined from FHST and a reference

attitude sensor data. This paper discusses a procedure that

was developed for enhancing the accuracies of attitude

solutions obtained with the SMM FHSTs. The procedure is

based on (i) minimizing the errors in observed star positions

by adjusting the scale factors in the equations calibrating

the distortions in S_4 star camera measurements and (2) min-

imizing the differences between the pitch and yaw attitudes

derived from the $5_ FHSTs and the reference FPSS by adjust-

ing the FHST misalignment parameters. Application of the

procedure to the case of the SMM FHSTs resulted in a two- to

three-fold improvement in attitude accuracy when data from

both star cameras were used to estimate attitude, and as

much as a ten-fold improvement when data from single cameras
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were used to determine attitude. Many details of the methods

used in this paper are presented elsewhere (Reference I) and

only the main results of the calculations are given here.

2.0 EVALUATION OF FHST MEASUREMENT UNCERTAINTY

The angles @ and ¢ defining the measured star position rel-

ative to the FHST boresight are defined as shown in Figure i.

These angles are converted to a unit vector using the fol-

lowing equation:

zk /k /k

S = cos _ cos _ X - sin % cos ¢ Y + sin ¢ Z (i)

2.1 SMM FHST DATA REDUCTION

The raw FHST counts H and V are converted to angles G and

through a complicated set of calibration equations. The

form at these calibrations is as follows (Reference 2):

fl (H,V,X) = C 1 + C2V + C3H + C4X + C5V2 + C6VH + C7VX + C8 H2

X 2 + CI2V2H + 2X+ C9HX + CI0 + CllV3 C13 V

+ C14VH 2 + C!5VHX + C16VX 2 + C17 H3 + C 18H2X

+ C19 HX2 (2)

where H = horizontal axis output in codnts

V = vertical axis output in counts

X = physical parameters as defined below

I(H,V,X) = H value corrected for X; fl in counts

C = calibration coefficients corresponding to

H value corrections
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The expression f2(H,V,X) for the V value corrected for X is

of the same form as fI(H,V,X) except for different calibra-

tion coefficients C.

Five separate applications of Equation (2) are necessary

for each axis. The first application is a flat-field tem-

perature calibration; X is the temperature in volts. The

second application is for intensity, with X being the star

intensity in volts. The third application has X equal to

the magnetic field along the boresight axis in gauss; the

fourth application has X equal to the magnetic field along

the star tracker h axis in gauss; and the fifth application

has X equal to the magnetic field along the star tracker

v axis.

The angle @ and @ are then given by

= -SH fl

e = -Sv f2

(3)

where S H and S V are the scale factors for a particular FHST

in degrees per count.

2.2 SMM FHST MEASUREMENT ERRORS WITH PRELAUNCH SCALE

FACTORS

Star tracker flight data taken on March 2 and March 3, 1980,

were used to evaluate this calibration. These data are com-

posed of three different passes, referred to as ACN-I, ACN-II,

and HAW. The data were rich in star information and repre-

sented the best data at the time the calibrations were

completed. The stars present in each pass were identified,

and the angle between each pair of stars was computed in the

FHST reference frame. These angles were compared to the
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corresponding angles computed from catalog stars. The dif-

ference between the catalog star separation angles and the

measured separation angles was computed for every possible

observed pair. The mean and standard deviation were computed
for each of the three passes. These results are shown in
Table i.

Table i. Mean and Standard Deviations of Differences
Between Observed Star Pairs and the Cor-
responding Catalog Star Pairs

Pass

FHSTI FHST2

Mean a Mean a
iarc-sec) (arc-sec) (arc-sec) (arc-sec)

ACN-I 40.1 31.2 94.9 42.1

ACN-II 52.5 39.6 105.2 42.0

HAW 73.6 44.9 98.2 36.8

a
= Standard deviation

The results shown in Table 1 are independent of the overall

FHST alignment, since only angles between stars in one ref-

erence frame (the FHST frame) are being compared to the cor-

responding angles in a rotated reference frame (the geocentric

inertial frame). Hence, these results reflect the inherent

accuracy of the FHST data. The results in Table 1 indicate

that the preflight calibration, when applied to actual flight

data, leads to Star position errors that are much larger

than the i0- to 20-arc-second range desired for SMM.

Since temperature effects can greatly influence the FHST

calibration, FHST temperature data around the SMM orbit were

examined. There was virtually no change in temperature as

the spacecraft made day-to-night transitions. In addition,

the temperatures have been virtually the same from the time

of launch through August 1980.
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2.3 SMM FHST MEASUREMENT ERROR WITH REFINED SCALE FACTORS

Because of the large errors in star position given by the

calibrated FHST data, as discussed in the previous subsection,

it was decided to attempt an in-flight calibration of the

FHST by treating the scale factors in Equation (3) as free

parameters. These scale factors were originally specified

by the manufacturer in the prelaunch specifications (Ref-

erence 2) .

First it is assumed that S (I) = SV(1) = S_ I) and

S (2) = S_ 2) = S_ 2) ; i.e., each FHST has only one scale

factor associated with it. With this assumption, a straight

line is expected when the angle between measured stars is

plotted versus the angle between corresponding catalog stars.

The deviation of the slope of this line from unity is related

to the actual value of the scale factor.

Starting with a scale factor of 0.002079 degree per count,

the following results were obtained:

s(1)

s (2)

= 0.0020683 degree per count for FHST1

= 0.0020673 degree per count for FHST2

These results, with the mean and standard deviation of the

data, are given in Tables 2 and 3.

Separate horizontal axis and vertical axis scale factors

were determined for each FHST by minimizing the angular

differences in positions of three stars at one time and

averaging the scale factors over as many triplets in the

field of view as possible. For this method, stars that were

near the edge of the field of view, that were very faint,

or that for any reason showed large standard deviations in

their positions were rejected.
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The following scale factors were obtained using the ACN

data of March 2, 1980, at 9:23 GMT (see also Tables 2 and 3) :

Scale Factor

Tracker Axis (degree per count)

FHSTI Horizontal 0.0020690

FHSTI Vertical 0.0020704

FHST2 Horizontal 0.0020654

FHST2 Vertical 0.0020672

Table 4 shows the same pairs of stars used in scale factor

determination with the prelaunch value.

3.0 EVALUATION OF SMM GHST ATTITUDE DETERMINATION

ACCURACY PERFORMANCE

The misalignment angles are defined as corrections to the

nominal 1-3-1 rotation from the Modular Attitude Control

System (MACS) to FHST reference frame. This transformation

is given by the following equation:

M (MACS to FHST) = TI(S 1 + 3_i ) T3(_ 2 + a2 ) TI(B 3 + _3 ) (4)

where the S's are the nominal angles, the e's are the small

misalignment angles, and T i represents a rotation about the

ith axis. The S's are given by the following:

FHST 33 62 81

102.0137

258.0593

1 -19.7724 53.34892

2 -19.73046 126.5083

3.1 FHST MISALIGNMENT BIAS DETERMINATION

To determine the misalignments, the attitude as computed

from the FHST is adjusted to match the FPSS attitude for the

pitch and yaw angles. Since there is no roll reference for

the FHST, the absolute _3 misalignment is not determined.
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Table . Comparisons of Catalog

Vector Separation With

Factors

and Observation

Prelaunch Scale

Star

FHST1

STAR
PAIR

1-2

I--3

1--4

1--6

1--7

2--3

2--4

2--6

2--7

3--4

3--6

3--7

4--6

4--7

6--7

CA T A LO G
ANGLE

(DEGREES)

2.6690691

5.8430880

8.5593707

4.2783210

9.175563

3.176033

5.9347617

1.6897312

6.506847

2.852352

1.8074348

3.3448504

4.6575541

1.56O9355

4.9774255

PGCI ANGLE
(DEGREES)

2.702847

5.885778

8.616201

4.308378

9.221828

3.182861

5.956749

1.684136

6.517856

2.866830

1.816287

3,348 180

4.682731

1.568525

4.991619

ANGULAR
DIFFERENCE*

(ARC-SECONDS)

-119.47

-115.04

-204,.59

- 108.24

- 166.55

-26.72

-78.34

20.85

-40.19

-55.27

-38.73

-17.14

-9O.90

-31.18

-53.00

ANGULAR
FHST2 CATALOG PGCI ANGLE DIFFERENCE''
STAR ANGLE (DEGREES) {ARC-SECONDS)
PAIR (DEGREES)

9--i0

9--12

9--13

9--17

10--12

10--13

10--17

12--13

12--17

13--17

,.990=,=9

5.1822015

3.1098777

3.4956558

3.8378062

3.3002027

1.9963691

7.1155099

5.0215907

2.7309527

!.999312

5.215897

3.124387

3.514408

3.856123

3.323802

2.016582

7.156287

5.054222

2.741496

-32.76

-121.30

-52.23

-67.51

-65.94

-84.96

-72.77

-146.80

-117.47

-37.96
Z

"MEAN = --74.97 ARC-SECONDS; a = 59.95 ARC-SECONDS

• "MEAN = --79.97 ARC.SECONDS; _ = 37.67 ARC-SECONDS
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However, (_3)FHST2 - (a3)FHSTI is determined from the dif-
ference in the roll attitude computed independently with each

star tracker at null atitude. The difference (_3)FHST 2
- (e3)FHSTI was computed as 0.04378 degree.

3.2 PARTIAL DERIVATIVE METHOD FOR MINIMIZING ATTITUDE ERROR

The method used to obtain the e I and e2 misalignments is

referred to as the partial derivative method. The attitude

is expanded in terms of the alignment angles about their

nominal values. Using the FPSS as a reference produces a

set of linear equations that result in solutions for e's.

These solutions are given by the following set of eauations:

(I) (Sy(1) 3p(1) (i))/j6¢_1 = _2(i) 5p(1) 3Y3e2(1) (5)

5e2 (I) (_Sy (I) 6P(1) (i) 6P(1) >/= (i) + _P _i) J_i 6_

6)

where

J I

3y(1) 3p(1) 3p(1) 3y(1)

(I) 3e2(i) 3c_(i) 3c_2(i)3el

7)

(i) (i) (!) (0)
6_ 1 = ''_'_1 - _'_1 8)

(9)
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i(i) _i)where _ and _ are the misalignments that are taken

to force FHSTI to yield the same pitch and yaw as given by
the FPSS and _ (0) and _ (0) are the starting values,

_p(1) _ p(1) (0) (i0)= PFPSS

_y(1) _ y(1) (0) (ii)= YFPSS

where PFPSS and YFPSS are the FPSS pitch and yaw and
p(1) (0), Y(1) (0) is the attitude determined with the trial

misalignments.

Since there is no absolute reference to determine i_3' the
dependence of the attitudes on this parameter is ignored.
This could lead to some difficulty, since the misalignment

will also indirectly affect the determination of '_i and _2"

3.3 ATTITUDE ACCURACY RESULTS

Using the standard sets of data--ACN-I, ACN-II, and HAW--the

best set of misalignment parameters is determined. These

results are shown in Table 5, with the averaged values and

the corresponding root-mean-square (rms) deviations. Certain

conclusions are readily apparent from these computations.

The misalignment around the boresight of the camera, el' is

very poorly determined by the data. This result will not

greatly affect the two-tracker attitudes. The misalignment

_2 is quite well determined, as shown by the results in

Table 5.
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Table 5. Misalignment Parameters

_HST1 FHST2

DATA

ACN4

ACN-II

HAW

AVERAGED
VALUES

ROOT-MEAN.
SQUARE
DEVIATIONS

(1)
a 1

(DEGREES)

-0.059

-0.01867

0.0108

-0.0223

126 ARC-SECON DS

0' 2

(DEGREES)

0.1073

(DEGREES)

O. 1696

(2)
:_ 2

(DEGREES)

-0.00555

0.1105

0.1078

0.1085

6 ARC-SECONDS

0.192

0.216

0.193

84 ARC-SECONDS

-0.0089

-0.0076

-0.0074

6 ARC-SECONDS

NOTE: THE MISALIGNMENT PARAMETERS ARE SHOWN FOR FHST1 AND FHST2 FOR THREE SETSOF
DATA. THE AVERAGED VALUES AND RMS DEVIATIONS IN ARC SEC ARE ALSO SHOWN.

O
=o

The attitudes before and after the misalignments have been

applied are shown in Table 6. It is apparent that a general

overall improvement has been obtained in the computation of

the pitch and yaw attitude components by the determined mis-

alignments.

The overall attitude accuracy based on these results is on

the order of ±30 arc-seconds.
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IN-FLIGHT CALIBRATION OF THE FINE POINTING SUN

SENSORON THE SOLARMAXIMUMMISSION

Dr. Pascal J. Gambardella

Computer Sciences Corporation, Silver Spring, Md.

Dr. Richard H. Thompson
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ABSTRACT

The attitude control objectives of Solar Maximum Mission

(SMM) are to point the boresight of the payload Fine Point-

ing Sun Sensor (FPSS) to any point within 30 arc-minutes of

the Sun's center with an accuracy of 5 arc-seconds (3a, pitch

and yaw) and a jitter of less than 3 arc-seconds (3_). To

meet these stringent accuracy requirements, a procedure was

developed for in-flight calibration of the FPSS. The space-

craft was maneuvered using FPSS offset commands to position

the Sun at different points within the FPSS field of view.

The coefficients of the FPSS digital-to-analog nonlinear

transfer function were determined by minimizing the residuals

between the pitch and yaw angles computed from the FPSS

measurements and the corresponding reference angles obtained

from Inertial Reference Unit (IRU) measurements.

In this paper, the actual in-flight calibration and the cal-

ibration algorithm are discussed. Spacecraft data are used

to assess the range of validity of the FPSS transfer func-

tion. The Sun's diameter is computed with the FPSS calibra-

tion results and the Ultraviolet Spectrometer and Polarimeter

(UVSP) experimenters' data. This calculation gives an in-

dependent verification of the calibration results.
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i. INTRODUCTION

The attitude control objectives of the S_¢ are to point the

boresight of the payload FPSS to any point within 30 arc-

minutes of the Sun's center with an accuracy of 5 arc-seconds

(3_, pitch and yaw) and a jitter of less than 3 arc-seconds

(3_). To meet these stringent accuracy requirements, a pro-

cedure was developed for in-flight calibration of the FPSS.

The spacecraft was maneuvered using FPSS offset commands to

position the Sun at different points within the FPSS field of

view. The coefficients of the FPSS _igital-to-analog non-

linear transfer function were determined by minimizing the

residuals between the pitch and yaw angles computed from the

FPSS measurements and the corresponding reference angles ob-

tained from Inertial Reference Unit (IRU) measurements.

In this paper, spacecraft data are used to assess the range

and validity of the FPSS transfer function. In addition, the

Sun's diameter is computed with the FPSS calibration results

and the Ultraviolet Spectrometer and Polarimeter (UVSP) ex-

perimenters' data.

2. EQUATIONS AND PROCEDURE

The Adcole transfer functions for each FPSS are (Reference i)

= A 1 + A2N e + A 3 sin (A4N e + A 5)

+ A 6 sin (A7N e + A 8)

(i)

and

@ = B I + B2N @ + B 3 sin (B4N @ + B 5)

+ B 6 sin (B7N 3 + B8)

(2)
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where A.l and B.I (i _ i _ 8) are constants, Ne and NB are the
FPSS digital outputs, and the angles e and _ are in radians.

During the calibration phase of the SMMmission, the space-

craft was maneuvered such that the Sun was positioned at dif-

ferent points within the reduced FPSS field of view. The

angular displacement of each sample point from the FPSS null

was measured independently by the FPSS and the calibrated

SMM gyros. The coefficients A i (2 _ i _ 8) and B i (2 _i _ 8)

of the FPSS calibration equations were determined by minimiz-

ing the differences between the FPSS observed changes in

pitch and yaw angles and the corresponding changes in the

reference pitch and yaw angles measured by the gyros at each

off-null sample point. The FPSS calibration algorithm em-

ploys a recursive least squares procedure which processes

changes in pitch and yaw angles rather than absolute pitch

and yaw angles to take advantage of the extreme accuracy with

which gyros measure attitude changes. The coefficients A 1

and B 1 for each FPSS were determined from the equations

(3)

Calibration data were obtained using a discrete slew maneuver

method and a continuous slew maneuver method. In the dis-

crete slew maneuver method, the spacecraft was commanded to

perform a series of slews (along the pitch and yaw axes) over

the 1-degree by 1-degree FPSS reduced field of view. Gyro

readings and FPSS readings were taken at each commanded slew

position. To reduce the accumulation of errors, each slew

maneuver was between null attitude and a specified off-null

attitude. Changes in attitude resulting from a null atti-

tude to an off-null attitude slew were input into the recur-

sive least squares algorithm. The changes in attitude from

an off-null attitude to a null attitude slew were also input.
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For the continuous slew maneuver method, the spacecraft is

commanded to perform bang-bang slews along the pitch and yaw

axes of the FPSS 1-degree by 1-degree field of view. Gyro

data and FPSS data were taken during the slew maneuver every

0.96 second.

The calibration results are presented in the following sec-

tion.

The continuous slew data were not used because of the large

residuals between the FPSS data and the gyro data. The large

residuals resulted from the high slew rate of the spacecraft

and the slight data sampling time shift between the FPSS and

gyro data. Hence, the FPSS was calibrated with discrete slew

data only.

The FPSS calibration uses the gyros as a reference and is

dependent on the accuracy of the gyro calibration. The FPSS

was calibrated with the gyro alignment/scale factor matrix,

and gyro drifts computed in flight. The drift rates were

adjusted slightly at each FPSS calibration to be consistent

with that particular set of data.

3. CALIBRATION RESULTS

The results of the FPSS calibration algorithm are presented

here and the accuracy of the algorithm is assessed. The

FPSS was calibrated in flight on March 18, June ii, June 27,

July 17, August 27, and September 4, 1980. These calibra-

tions are summarized in Table i, and the corresponding FPSS

coefficients are given in Tables A-I through A-7 in the ap-

pendix.

The mean pitch residuals I&PFPsS - IPGYRO i and yaw residuals

14 - _YGYRO I are a measure of the accuracy of the cali-_YFPsS

bration algorithm. A comparison of the FPSS calibration
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residuals from all of our calibrations as of this writing are
given in Table i. The maximum residuals are also tabulated.

After the March 18 calibration, the spacecraft was slewed

+179 arc-seconds in pitch and -Iii arc-seconds in yaw to

facilitate the solar experiments on SMM. This will affect

the A 1 and B 1 coefficients on calibrations III through V.

Furthermore, on August 22 the spacecraft was slewed +44 arc-

seconds in yaw. This will affect the A 1 and B 1 coefficients

in calibration VI.

Both FPSSs have degraded since July 31, 1980. The overall

degradation in FPSSI is shown in Figures 1 and 2, where the

FPSSI pitch and yaw differences between various calibrations

are shown.

As an independent verification of the calibration results,

calibration VI was used to compute the solar diameter on

August 6. This was accomplished by noting the FPSS raw

counts when the UVSP experimental boresight made crossings

of the Sun's limb, (Reference 2). These results are pre-

sented in Table 2. The results show that the Sun's diam-

eter computed with the calibration results is consistent

with the accepted value of the Sun's diameter for August 6.
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Table 2. UVSP Limb Crossing Results for August 6, 1980

Time Pitch Yawb
Limb FPSS Counts a (HHMMS SMMM) (arc-sec) (arc-sec)

South +10394.5 0.104933450

North -6517.0 0.105327950

East -7363.5 0.110137730

West 9812.0 0.110533200

946.5

-945.8

957.9

-942.2

aobtained from Reference 2 by dividing the numbers presented

there by +0.109866 and -0.109866 (for pitch and yaw, respec-

tively).

bThe calibrated FPSS pitch and yaw angles were computed from

the transfer function determined from the August 24, 1980,

and the August 25, 1980 calibration slews.

NOTES : N-S diameter = 1892.3 arc-seconds

E-W diameter = 1900.i arc-seconds

Accepted diameter for August 6, 1980 = 1895.36 arc-

seconds (Reference 3)
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APPENDIX A. SUMgARY OF FPSS COEFFICIENTS

Table A-1. I Prelaunch Calibration Coefficients

Coefficient FPSS1 FPSS2

-3 -3
A 1 0.i090831 x i0 -0.8047742 x l0

A 2 0.5326322 x 10 -6 0.5326322 x l0 -6

A 3 0.1335975 x 10 -4 0.2808313 x 10 -4

-3 -3
A 4 0.1917476 x i0 0.1917476 x i0

i0 +I i0 +I
A 5 0.29628831 x -0.1695882 x

A 6 0.1745964 x 10 -4 0.1150606 x 10 -4

-3 -3
A 7 0.3834951 x I0 0.3834928 x i0

A 8 0.8659915 0.1223491 x i0 +I

-3 -3
B 1 -0.172264 x i0 -0.5874911 x i0

B 2 0.5326322 x 10 -6 0.5326322 x 10 -6

B 3 0.1207313 x 10 -4 0.1443567 x 10 -4

-3 -3
B 4 0.1917476 x i0 0.1917476 x i0

B 5 -0.1390673 x i0 +I -0.2480650 x i0 +I

-4 -5
B 6 0.1523304 x i0 0.9449009 x I0

B 7 0.3834951 x 10 -3 0.3834951 x 10 -3

B 8 0.1206903 x I0 +I 0.9041772
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Table A-2. I Postlaunch Calibration Coefficients

Determined March 18, 1980

Coefficients

A 1

A 2

A 3

A 4

A 5

A 6

A 7

A 8

B 1

B 2

B 3

B
4

B
5

B
6

B 7

B 8

FPSSi FPSS2

-4
-0.8467783 x i0

0.5320264 x l0 -6

-5
-0. 3860728 x i0

-3
0.3072369 x i0

0.3092502 x lO +1

-4
-0.2778208 x i0

-3
0.2594346 x l0

0.1737169 x 10 +1

-3
-0.1869254 x i0

0.5312469 x 10 -6

-4
0.1416509 x I0

-3
0.4284356 x i0

-0.1017843 x 10 +1

-4
0.2674199 x i0

-3
0.2226275 x i0

+i
0.1267732 x i0

-3
0.8337881 x l0

0.5300202 x l0 -6

-0.32923_4 x l0 -4

-3
0.1634355 x i0

-0.1704371 x 10 +1

-5
-0.6869980 x i0

-3
0.3717518 x i0

. 10 +10 1595601 x

-3
0.5601689 x i0

0.5317111 x 10 -6

-0.1834644 x 10 -4

-3
0.2224163 x 10

- . l0 +l0 2684492 x

-5
0.4998647 x I0

-3
0.5214850 x I0

-I
-0.3890319 x l0
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Table A-3. II Postlaunch Calibration Coefficients

Determined June ll, 1980

Coefficient FPSSI FPSS2

A 1

A 2

A
3

A
4

A 5

A 6

A 7

A 8

B 1

B 2

B 3

B 4

B 5

B 6

B 7

B 8

-4
-0.8367909 x l0

0.5318888 x l0 -6

-5
-0.4074826 x i0

-3
0.2879776 x i0

0.3085873 x 10 +1

-4
-0.2873860 x i0

-3
0.2495391 x i0

. 10 +10 1739822 x

-3
-0.1922094 x i0

-6
0.5310392 x i0

-4
0.1485801 x i0

-3
0.4229986 x i0

-0.7733552

-4
0.2962723 x i0

-3
0.1890266 x i0

0.1361674 x 10 +1

-3
0.8259816 x i0

-6
0.5300066 x i0

-0.4318272 x 10 -4

-3
0.1498738 x l0

- . 10 +10 1640329 x

-5
-0.9401628 x i0

-3
0.3194979 x I0

+I
0.1708081 x i0

-3
0.5554837 x i0

0.5305829 x 10 -6

-4
-0.2491201 x i0

-3
0.1562029 x I0

. 10 +1-0 2638508 x

-5
0.6656607 x i0

-3
0.4382294 x i0

-0.9191982 x 10 +1
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Table A-4. III Postlaunch Calibration Coefficients

Determined June 27, 1980

Coefficients

A 1

A 2

A 3

A 4

A 5

A 6

A 7

A 8

B 1

B 2

B 3

B 4

B 5

B 6

B 7

B 8

FPSS1 FPSS2

-3
-0.5005656 x l0

-6
0.5321897 x i0

-4
0.2804029 x i0

-3
0.3004984 x I0

+i
0.4356816 x i0

-3
-0.1210886 x i0

-3
0.1686625 x i0

0.1556701 x 10 +1

-0.1086737 x 10 -2

0.5458022 x 10 -6

0.2859741 x 10 -4

-3
0.4699715 x i0

-0.1037046 x 10 +1

-4
0.2968237 x i0

-3
0.1812999 x i0

0.1252416 x 10 +1

-3
0.3856357 x i0

-6
0.5316871 x i0

-5
0.8814421 x I0

-3
0.5507673 x I0

-0.2294463 x 10 +1

-0.3935267 x 10 -4

-3
0.3279436 x I0

0.2645207 x 10 +1

-3
-0.2948222 x i0

0.5415047 x 10 -6

0.2531778 x 10 -4

-3
-0.3735274 x i0

-0.2593021 x 10 +1

0.3284074 x 10 -4

-3
-0.1052192 x i0

-0.1360665 x 10 +1
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Table A-5. IV Postlaunch Calibration Coefficients
Determined July 17, 1980

Coefficients FPSS1 FPSS2

A 1

A 2

A 3

A 4

A 5

A 6

A 7

A 8

B 1

B 2

B
3

B 4

B 5

B
6

B
7

B
8

-3
-0.4818073 x l0

-6
0.5318731 x i0

-4
0.3316726 x i0

-3
0.3004717 x i0

+I
0.3788808 x 10

-3
-0.1440138 x i0

-3
0.1678243 x i0

. 10 +10 1678735 x

-0.1086574 x 10 -2

0.5408410 x 10 -6

-4
0.4516499 x i0

-3
0.3423773 x l0

-0.7504307

-4
0.3953853 x i0

-3
0.1394383 x i0

0.1192923 x 10 +1

-3
0.3970052 x i0

-6
0.5325560 x i0

-0.3573487 x i0 -5

-3
0.5203074 x i0

. 10 +1-0 2229115 x

-0.4843318 x 10 -4

-3
0.2682219 x i0

. 10 +10 2263416 x

-3
-0.3003116 x i0

0.5396636 x 10 -6

-4
0.3816943 x i0

-3
-0.3097056 x i0

-0.2698493 x lO +1

-4
0.3490103 x i0

-3
-0.1010980 x i0

-0.1339042 x 10 +1
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Table A-6. Postlaunch Calibration Coefficients

Determined August 27, 1980

Coefficients FPSS1 FPSS2

A 1

A 2

A 3

A 4

A 5

A 6

A 7

A 8

B 1

B 2

B 3

B 4

B 5

B 6

B 7

B
8

-3
-0.4508724 x i0

-6
0.5289703 x i0

-4
0.3533130 x I0

-3
0.3166422 x i0

. 10 +10 3402219 x

-3
-0.1872402 x I0

-3
0.1720052 x i0

0.1743850 x 10 +1

-0.1088536 x lO -2

0.5404148 x 10 -6

-4
• 0.5595529 x i0

-3
0.3116594 x 10

-0. 4978371

-4
0.3268151 x i0

-3
0.1127492 x i0

. 10 +t0 IIS7505 x

-3
0.4214450 x i0

-6
0.5309641 x i0

-5
-0.3210337 x i0

-3
0.5288627 x i0

-0.2474054 x 10 +1

-4
-0.6040415 x i0

-3
0.2535198 x i0

. 10 +10 2169274 x

-3
-0.2967559 x i0

0.5396493 x 10 -6

-4
0.4825613 x l0

-3
-0.2824294 x i0

-0.2923239 x 10 +1

-4
0.3803778 x i0

-3
-0.1327780 x i0

• 10 +1-0 1339587 x
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Table A-7. Postlaunch Calibration Coefficients

Determined September 4, 1980

Coefficients FPSSI FPSS2

A 1

A 2

A 3

A 4

A 5

A 6

A 7

A 8

B 1

B 2

B 3

B 4

B 5

B 6

B
7

B
8

-3
-0.6776863 x i0

0.5284552 x 10 -6

-4
0.2988950 x i0

-3
0.3252105 x i0

. 10 +10 3388264 x

-3
-0.1827369 x i0

-3
0.1706592 x I0

. 10 +10 1830159 x

-0.1081432 x 10 -2

0.5378218 x 10 -6

0.6281060 x 10 -4

-3
0.2800354 x I0

-0.4471897

0.3239203 x 10 -4

-5
0.1877559 x I0

. 10 +10 1180826 x

-3
0.1946652 x l0

-6
0.5323566 x i0

-5
-0.4638057 x i0

-3
0.4797970 x i0

-0.2600997 x 10 +1

-4
-0.4252801 x I0

-3
0.2589267 x i0

0.2113208 x 10 +1

-3
-0.3001880 x i0

0.5367186 x 10 -6

0.6410728 x 10 -4

-3
-0.2461689 x i0

-0.3109232 x 10 +1

0.4965452 x 10 -4

-3
-0.1906793 x i0

-0.1393259 x lO +1
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MAGSAT ATTITUDE DYNAMICS AND CONTROL:
SOME OBSERVATIONS AND EXPLANATIONS

Thomas H. Stengle

Goddard Space Flight Center

ABSTRACT

The Magsat spacecraft was placed into an elliptical sun synchronous orbit
on October 30, 1979. Before its reentry 7 months later, Magsat had trans-
mitted an abundance of valuable data for mapping the Earth's magnetic field.
As an added benefit, a wealth of attitude data for study by spacecraft
dynamicists was also collected. Because of its unique configuration, Magsat
presented new control problems. With its aerodynamic trim boom, attitude
control was given an added dimension. Minimization of attitude drift, which
could be mapped in relative detail, became the goal. Momentum control,
which was accomplished by pitching the spacecraft in order to balance aero-
dynamic and gravity gradient torques, was seldom difficult to achieve.
However, several interesting phenomena were observed as part of this activity.
This included occasional momentum wheel instability and a rough correlation
between solar flux and the pitch angle required to maintain acceptable
momentum.

This paper presents an overview of the attitude behavior of Magsat and some
of the control problems encountered. Plausible explanations for some of
this behavior are offered. Some of the control philosophy used during the
mission is examined and aerodynamic trimming operations are summarized.
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I. Introduction

Managed by NASA's Goddard Space Flight Center, the Magsat spacecraft
was a 3-axis stabilized spacecraft placed into a sun synchronous elliptic

orbit of 350 X 560 km on October 30, 1979. During its lifetime which ended

with reentry on June II, 1980, Magsat met its scientific goals and also

provided valuable information regarding spacecraft attitude dynamics and
control in the low altitude flight regime. Goddard's Attitude Determination

and Control Section (ADCS) was charged with the responsibility of daily

attitude control operations and monitoring the health and safety of Magsat's
semiautonomous control system. As a fallout from this activity and definitive

attitude processing by the ADCS, an abundance of attitude data was accumulated.

Continued analysis of this data is providing practical insight into such items

as aerodynamic drift characteristics, drift minimization, and momentum control.

Another benefit from this mission was the operational experience gained from

controlling a spacecraft which had a large amount of control autonomy, yet

still required 24-hour monitoring and numerous ground supplied control system
updates.

Built by the Applied Physics Laboratory (APL), the_Magsat spacecraft
pictured in figures l and 2 utilized a SAS-C type bus. In flight, the space-

craft's Z axis (pitch axis) was nominally pointed near negative orbit normal

(NON). Angular momentum provided by the body and a momentum wheel was

directed along the -Z axis. In contrast to SAS-C, Magsat was given additional

attitude control autonomy due to anticipated high aerodynamic torques. An

Attitude Signal Processor (ASP) performed the onboard control system functions

and required occasional updates via ground command by the ADCS. The ASP will

be discussed in more detail later. Ground commanding of the spacecraft's

magnetic coils for roll/yaw or momentum control served as a backup mode which

was never required following initial ASP acquisition.

Activation of the spacecraft's magnetic coils for roll/yaw control or

momentum dumping by either the ASP or ground command was not desired for

two reasons. First, this activity corrupted science data gathered by the

experimenter's magnetometer. Second, nutation was increased which had the

potential for impacting fine attitude determination required by the experi-
menter. In order to achieve the goal of minimizing magnetic coil activity,

several control capabilities were available and were utilized by the ADCS.

As an aid to balancing yaw torques and thus Z-axis drift, a variable

length aerodynamic trim boom was built into the spacecraft. The length of
this boom was controlled by ground command and was adjusted on several

occasions during the mission. Also available for drift control was the

capability to target the spacecraft's Z axis to some point off negative

orbit normal where the spacecraft might be better trimmed aerodynamically.

It was suggested in prelaunch analysis that the Magsat spacecraft might be

trimmed with its Z axis at a point between 2 to 40 above NON. While actual

experience presented later will show that this trim point varied considerably

throughout the mission, the importance here is that control requirements
were flexible enough (and, in fact, necessary) to allow placing of the
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spacecraft spin axis where roll/yaw control could be minimized. The amount
of acceptable drift from the target attitude before ASP activation of control
coils was also variable. By changing this control threshold, the drift could

be highly restricted at the expense of control torques or given no tight
bounds. Another major capability which aided in minimizing coil activity

was associated with momentum control. On a near daily basis, the spacecraft's

pitch was biased so as to alter the relative effects of the gravity gradient
and aerodynamic torques on the spacecraft, thus affecting momentum build-up

or loss.

From a control standpoint, Magsat's mission might be divided into three

phases. First was an initial acquisition and trimming phase which took place
the first 3 weeks of the mission. During this time, the spacecraft was placed

into the ASP mode of operation, both the experiment and aerodynamic trim booms

were deployed, and momentum control was established by biasing the spacecraft

in pitch. This was also an active period of attempting to stabilize the
spacecraft's drift with relatively frequent target changes and trim boom

positioning.

Following this initial period was a time lasting roughly 4½ months which

might be classified as the nominal operations phase. During this phase,

control torques were kept to a minimum with active pitch biasing of the space-
craft and six trim boom operations. Magsat's target attitude remained nearly

constant at a position 40 above NON.

The final 2 months of the mission were not nominal by any standard.

Originally designed as a 5-month mission, orbit decay was less than predicted,

thus giving the spacecraft an additional 2 months of life. This resulted in

two complications. First, the orbit had time to precess enough so that the

spacecraft encountered increasingly larger periods of darkness which had not
been anticipated under the prelaunch mission plan. The second complication

was that the Sun angle increased so as to create problems in fully charging

the spacecraft's battery. These two factors necessitated a Project Office

decision to move the spacecraft's target attitude roughly lOo to improve solar

array position relative to the Sun. While the ASP successfully maintained

the spacecraft Z axis at this off-nominal target roughly 6 below NON, the
spacecraft drift and relative frequency of control torques increased

drastically. Also as a result of the low power conditions that existed, a
considerable amount of full orbit attitude data was lost due to tape recorder

turn-offs. The off-nominal target was held until 2 weeks before reentry when
it was decided that drift had to be reduced to insure successful attitude

control during Magsat's final days. At that time the Z axis target attitude
was returned to a point 40 above NON. Attitude drift and control activity

benefited considerably. Approximately 27 hours before spacecraft reentry,

the target attitude was changed due to Sun sensor calibration limitations

to a point 20 above NON. The subsequent increase in drift could not be

corrected by the ASP resulting in a nonrecoverable loss of attitude control

20 hours before reentry.
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The primary intent of this paper is to summarize someof the dynamics
and control phenomenaobserved by the ADCSduring Magsat's 7-month mission.
Specifically, items associated with roll/yaw control and momentumcontrol
are discussed. Wherepossible, flight data is presented and actual flight
experience is comparedto prelaunch expectations. Postmission analysis by
the ADCSis continuing with emphasis being placed on obtaining a more
thorough understanding of the nature of Magsat's aerodynamic trim point
and in studying flexible boomdynamics.

II. The Attitude Signal Processor (ASP)

As mentioned before, the ASP performed the onboard control system

functions and required periodic updates via ground command by Goddard's
Attitude Determination and Control Section. While the ASP is not the

subject of this paper, its general operation and capabilities should be

summarized. For a detailed description, the reader is directed to refer-
ences 2 and 3.

Pitch control was maintained with a momentum wheel tied into a control

loop which included an Ithaco IR scanner, a filter, and a gyro. While
pitch control was active throughout the spacecraft's orbit, activities

associated with roll/yaw control and momentum dumping were keyed to 14

control points in the spacecraft's orbit referenced from the ascending

node. These control points are depicted in figure 3. Of these 14 control

points, four were roll sample checks, two were momentum checks and the

remaining eight were points for possible magnetic coil commands by the
ASP. Roll samples were taken by the IR scanner at the poles and nodes and

indicated to the ASP any attitude error from a ground supplied target

attitude. Note that a roll error at the poles represents a declination

error from negative orbit normal. Likewise, a roll error at the nodes

represents a right ascension error from negative orbit normal. If the

ASP determined that the Z axis had precessed beyond some ground supplied
threshold from the target attitude then the Z axis coil was commanded on

at an appropriate torque zone. Right ascension torque zones were located

around each node while declination torque zones were located between 220

and 400 in latitude. The duration of the Z coil on time was a ground
supplied parameter but was typically 5 minutes. A similar procedure was

followed for momentum control. If the speed of the momentum wheel exceeded

the nominal speed of 1500 rpm by some ground supplied threshold (usually
200 rpm), spin/despin coils were Commanded on. The duration of the coil

on time for momentum dumping could be as high as 40 minutes. This outline

of roll/yaw and momentum control represents the nominal operational ASP

mode. Certain variations in roll/yaw, pitch and momentum control existed,
but will not be covered here. One operational restriction which should be
noted is that the spacecraft had to be maintained within 12° in roll

in order to avoid an IR scanner failure due to calibration limitations.

If this occurred, the pitch control loop was disabled and had to be re-
activated by ground command.
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Nineteen ASPparameters were uplinked to the spacecraft on a near daily
basis. Most frequently changedwere the spacecraft's orbital period, ASP
clock correction, pitch bias, and percent Earth values used for roll deter-
mination. It should be pointed out that the spacecraft's target attitude
was controlled with the percent Earth values. Other parameters which were
changed, but with less frequency were the thresholds used by the ASPto
determine the necessity for momentumdumpingor roll control. Loads to the
ASPwere generated on tape and quality assured by the ADCS. These tapes
were hand carried to Goddard's Multi-satellite Operations Control Center
(MSOCC)for uplink to the spacecraft at a scheduled station pass. Although
a minimumof one ASPload could usually be expected each day, updates to
the pitch bias and orbit related parameters were not regularly scheduled
events, but were the result of an attitude control analyst's decision to
improve ASPperformance. Changesin target or control threshold parameters,
however, always followed consultation with the Magsat Project Office.

III. Momentum Control

Although conceptually easy to understand, momentum control activities
often presented some perplexing problems operationally. Because automatic
momentum dumping could result in coil activity for as long as 40 minutes,
it was very desirous, and became a goal to eliminate the necessity for
automatic dumping through proper biasing of the spacecraft in pitch. This
approach to controlling momentum was advanced early in the mission planning
by the APL and during most of the mission was handled with success by the
ADCS. By pitching the spacecraft, the magnitude of the gravity gradient
and aerodynamic torques could be altered so as to affect a wheel speed change
advantageous to momentum control. An average of one pitch bias update was
uplinked to the spacecraft each day. While this exceeded the APL's estimate
of one every two days, there were periods of up to 4 days in which there
were no pitch bias changes. As a measure of the success of this approach
to momentum control, the spin/despin coils were inactive between November I0,
1979, and May 15, 1980. During much of the mission the primary control
function was one of fine tuning the bias. Wheel speed changes were usually
held to less than 5 rpm/orbit. Nominal changes in the pitch bias were on
the order of .I-.2o.

The aerodynamic model of the Magsat spacecraft used in simulations and
both prelaunch and postmission analysis decomposes the spacecraft into ten
elements. While its accuracy is questionable, it is useful in showing general
trends and in providing theoretical estimates of torque magnitude as shown
in figure 4. Aerodynamic torques were addressed in several technical memos
before launch and formed an integral part of the control philosophy. In-
tuitively, these torques can be expected to exhibit the largest daily
variations due to the wide range of altitude dependent atmospheric variables.
Successfully predicting these variations and their effect on the required
pitch bias for momentum control does not appear practical. Plots of the pitch
bias and averaged daily flux as given in figure 5 appeared to show some rough

22-8



Ir--
LL.

°r--

c-

¢D
¢-
U

u
°_

c- __

o

I I I I
0 0 0 0
0 0 0 0

I I
0 0 0 0 0 0 0
0 0 0 0 0 0

I I i I

(_0-- 3NAG) =IMOWO.L

l I
o o
o o
o

'7 '7

22-9



J

__)
_f

C1'
LL_

L__

__]
__I

J

V
7
i

0
i i L,

(8:l:Ik:lO:ICl) SVI8 HOlld

I I I I i I I I i/_-
:0 0 0 0 0 0 C) 0

OJ

0

',1,-.

'T--

CO

"¢1"

0'_
'V-- I_

a'J

v

0 W

"-" 0

_0
04

OJ

_0

0

11"-

Xl77-1EIV70£ I/_O Z'O L

0

cc,
,r-

X r-,.

% _-
..a

m _

• r- |

t'-

•r'- _
_-- E

(lJ

• 0
m :7

£-

°_-

22-10



I

O

cJ

\

z

i I I

D-----
k-___
zm
LU<

O00
_z

CD LO O If)
I
kr)

(S33W930) SVI8 HOlld

I 1 • I I

",::t cO O4 "7.

(cw/6)l oL-0LX) 33911=13d

J.V AIISN3(] 03±nd_NOO

o

cO

O4

CO

o0

O
4-)

V_

>_.
4J

oi--

(--

aJ
1:3

aJ

¢J

13.

E
O

c-

tO

or-

-C

(J
¢J

o_

CIJ

E_

°r-
LL

O

CO

0%

Lr)

°p-

:'I.

I

r--

>_

c-

'-3

v

22-11



correlation early in the mission. A 28-day cycle associated with the

pitch bias activity was evident and was phased similar to the Sun's 28-day

cycle. However, this correlation did not hold true nor did the pitch

bias history show any likeness to the nature of the atmospheric density
at perigee computed using a flux dependent Jacchia model (figure 6).

Gravity gradient and aerodynamic torques act in opposite directions

which makes possible the use of these torques for momentum control. It

must be kept in mind that the purpose was to balance net orbital torques.
Variations over the orbit in wheel speed could be expected due to the

altitude dependent aerodynamic torques. (Altitude variations in gravity
gradient torques were relatively small). The orbital variation in the wheel

speed was nominally less than 15 rpm, but went higher than lO0 rpm when the

pitch bias was increased to 80 late in the mission. The magnitude and

direction of the torques were such that to spin up the wheel the spacecraft

was pitched in a negative sense when average orbital gravity gradient torques
dominated during the first 6 months of the mission and a positive sense

when average orbital aerodynamic torques dominated at the end of the mission.

The transition period in which the relative roles of the gravity gradient

and aerodynamic torques reversed was one of two noteworthy items observed

as part of momentum control activities. This period occurred 6½ months
into the mission with the spacecraft in a 270 km X 365 km orbit and lasted

2 weeks. During this time the momentum could not be controlled by biasing

the spacecraft in pitch. The reason for this can be shown both theoretically

and graphically. Tossman of the APL described the average orbital torque

about the pitch axis as:

where

T

K0

KGG

= K0 + KGG P + KAERO P

= torque at zero pitch

= _TGG/_ p

KAER0 : _TAERO/_ p

P = pitch angle

TGG = average orbital gravity gradient torques

TAER 0 = average orbital aerodynamic torque

Theoretical results show that the coefficients KGG and KAERO are linear
and of opposite sign over the range of pitch bias angles used operationally

(figure 4). By defining KAFRn and K0 as coefficients derived from average
torques over an orbit, orbl_aT variations in these coefficients are avoided.

Solving for the pitch angle required to balance the two torques results in

the following expression:

p : -Ko/(KGG + KAERO)
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At ran h: _aHily _mn, when KGG and K^rnn apprnach each other in maonitude
(but still of opposite sign) torque control using pitch biasing becomes no
longer effective. Also, depending on which torque dominates, the spacecraft
must be pitched in opposite directions to achieve, for example, an increase
in momentum.

Returning to the available wheel speed data during the mission and the

pitch bias history, it is instructive to determine actual values for the

coefficients KA_RO and KGG. The sum of these two coefficients, KGG + KAERO
is plotted in flgure 7 for the period between January l and May l, 1980.

The results do not clearly show what might intuitively be expected but do

reflect the randomness and variability of the spacecraft's aerodynamics. A

gradual decline in KGG + KAERO would be expected as the aerodynamic torques

gradually increase in importance. This, however, is not obvious from the

flight data. Unfortunately, definitive values for KGG + KAERO beyond May l,
1980, cannot be easily determined. This is due to a scarcity of good data

resulting from poor spacecraft health and the fact that with the higher

pitch biases used, it is difficult to determine with some confidence the
net wheel speed acceleration.

The transition period is depicted graphically in figure 4. Plotted

are average gravity gradient torques and aerodynamic torques over an orbit

versus pitch angle. Three theoretical curves are featured for the average

aerodynamic torques corresponding to conditions found throughout the mission.

As the mission progressed, the magnitude of these torques increased, thus

effecting the magnitude of the slope of the aerodynamic torque curves given

in figure 4. This plot shows graphically the proper pitch angle for zero

torque about the pitch axis (and thus, no acceleration in the momentum wheel)

and also the trend towards a more negative pitch as aerodynamic torques gain

in relative importance. Figure 4 also shows the need for a positive pitch

when this torque dominates the system.

One surprise associated with the transition period was how rapid the

aerodynamics changed. In the l-week period immediately preceding the loss

of momentum control, the required pitch bias increased from 2° to its
operational limit of 80 . Previous to that time momentum control activity

had been relatively stable with pitch biases ranging between .50 and 20 .

Once it was concluded that wheel speed had been lost, the pitch bias
was returned to zero. This was done to reduce orbital variations in the

wheel speed caused by orbital variations in the aerodynamic torque. With-
out the momentum control capability with pitch biasing, automatic momentum

dumping using electromagnetic coils occurred several times a day. Some

degree of control over the momentum was achieved by biasing the spacecraft

pitch following the 2-week transition period. It should be pointed out
that this was approximately l week before spacecraft reentry and time did

not permit the establishment of tight control over the momentum which was

exhibited during the first 6½ months of the mission. Nevertheless, there

was a reduction in momentum dumping activity the last week of the mission
by biasing Magsat's pitch.
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occasional instability in the momentum. This required more active monitoring

of the momentum wheel speed and numerous ASP loads with large pitch bias changes

to bring the momentum back under control. At least three periods of wheel speed
instability were encountered during the mission. These periods can be observed

in figure 6 as sudden changes in the required pitch bias following a period of

relatively small pitch bias changes. This feature was characterized by .a
rapid rise or fall in the wheel speed as high as 30 rpm per orbit requlrlng

large, immediate changes to the pitch bias to avoid spin/despin coil activity.

Thus far, there has been no confirmation that a sudden change in atmospheric

conditions affecting aerodynamic torques caused these rapid changes in the

wheel speed. This does, however, appear to be the only plausible explanation.
There also has not been any consistent correlation found between these periods

of wheel speed instability and significant changes in the spacecraft Z axis

drift. This might be expected since Z axis drift should be affected by large
changes in aerodynamics which might suddenljt change spacecraft momentum. A

rough correlation can be found for one case around March 25, 1980. On that

day, the spacecraft drift suddenly increased from 2O/day to 8°/day. At that

time, there was also a larger than nominal drop in wheel speed. The importance
of the occasional momentum instability is that it illustrates the need for

active monitoring of a spacecraft such as Magsat while in low altitude flight.

Real time monitoring and near real time response was often necessary to avoid
magnetic coil activity. This phenomenon also adds evidence to the extreme

variability of atmospheric conditions.

IV. Spacecraft Drift

Drift minimization became the most challenging aspect of Magsat's control

activities. The goal was to eliminate all attitude control torques by using
the trim boom and by properly adjusting relevant ASP parameters for attitude

target placement. Of course, this goal was not achieved. However, with the

exception of the few weeks following launch when active trimming operations

were underway and the final 9 weeks of the mission when the spacecraft had to

be held at an off-nominal attitude, the number of control torques was below

most prelaunch expectations. In fact, there were periods in excess of 2 weeks

in which there were no control torques. These periods can be seen in a

histogram of the attitude control torques given in figure 8. Part of this
success must be attributed to the fact that a 60 control threshold was used

during most of the mission rather than the 20 bounds suggested before launch.

This allowed more overall drift, but did not jeopardize control or safety of
the spacecraft. Prelaunch estimates of the control torque activity were as
high as three torques per day with a control threshold of 20 .

The daily Attitude Determination and Control Section role in drift control

was one of processing a minimum of one orbit of playback data to track the

spacecraft Z axis drift in right ascension and declination coordinates. De-

cisions regarding trim boom operations and target changes were made by the
Attitude Determination and Control Section following consultation with the Magsat

Project Office and on occasion, the Applied Physics Laboratory. In general,

there was considerable caution by all organizations involved during the early
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months of the mission towards overuse of the aerodynamic trim boom and in
_,U II:_ _ IVCl t, Iactively changing the spacecraft target attitude. This iF_itial 3,,,

was the result of several factors. First was the uncertainty in the

physical reliability of the trim boom system following a large number of
extensions and retractions. A second factor was the lack of experience in

controlling a spacecraft such as Magsat with its unique configuration and

control capabilities. Although the amount of prelaunch analysis by both

the Applied Physics Laboratory and the Attitude Determination and Control
Section was considerable, large uncertainties in modeling aerodynamic

effects seemed to demand a certain degree of hesitancy in making changes

to trim boom length or target location until more experience and confidence

could be gained with these operations.

Use of definitive data can now give a more complete picture of Magsat's

drift characteristics. As predicted by simulations conducted by the Applied

Physics Laboratory, Magsat's drift track is characterized by two distinct

circular motions as illustrated in figure 9. One circular track which is
traced out over an orbit is of varying size, but typically around l° in

diameter. This orbital motion can be attributed primarily to variations in

the aerodynamic torques as the spacecraft travels through its orbit. While

gravity gradient torques were present and affected roll/yaw torques, their

effect appears to be of lesser importance when compared to aerodynamic

torques. If the spacecraft were properly trimmed such that total environ-
mental torques averaged over the spacecraft's orbit were zero then the orbital

drift circle was closed. If the net torque was nonzero, then in addition

to the orbital drift track, the spacecraft's Z axis would also precess about

a larger, secondary circle with a period ranging between 4-7 days. The size
of this circle varied, but was typically observed to be between 2-60 in

diameter. Figure lO is another example of this secondary Z axis precession.

The orbital motion has been removed for clarity. In figure lO, not only
can the circular drift track be observed, but also the consequence of drift-

ing outside the control bounds as specified by the ground supplied target

attitude and control threshold. Both a right ascension and declination

control torque are shown.

The center of the secondary circle was referred to in prelaunch analysis

and during the mission as the spacecraft trim point. While the location and

uniqueness of this trim point is still being studied, the apparent trim point
during the mission was not stationary, although it always remained above

negative orbit normal in declination. The Applied Physics Laboratory pre-
dicted that net orbital Z axis motions would center about a preferred trim

point. The desirability by the Z axis to remain above NON has been attributed
to superrotation of the atmosphere. Dynamic analysis by Tossman (references
4 and 5) indicated that minimum attitude perturbations would exist if Magsat

flew into the relative wind. Thus, Magsat wanted to fly at a biased

declination angle, directed into the westerly wind caused by atmospheric
superrotation. In effect, this superrotation of the atmosphere introduces

a "side" component of wind which is variable in direction and magnitude as

the spacecraft passes through its orbit. Figure II shows the X, Y, and Z

components of the spacecraft wind vector in spacecraft body coordinates
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which were calculated for a Magsat orbit with the target attitude at NON.

These components are normalized with respect to the spacecraft velocity at

perigee. As can be seen, a considerable component of the wind vector is

present in a direction parallel to the pitch axis. With Magsat's relatively

large (.28 m) center of mass-center of pressure offset along the roll axis,

density variations due to the orbit's eccentricity, and superrotation,

significant variations in the yaw torque could be expected. Simulations
show that the Z component of the wind vector is significantly reduced by

targeting above NON. This results in yawing the spacecraft into the
relative wind.

The significant point here is that no matter how far the spacecraft

was placed from the trim point, the precession of the Z axis was always

such that it circled a trim point located above negative orbit normal.

Generally speaking, the larger the circle of precession, the higher the

drift rate. The Applied Physics Laboratory believed that a viable control

approach for reducing drift would be to determine the trim point by tracking

the Z axis precession over a period of days and then maneuver the spacecraft

to that target. Subsequently, the net orbital Z axis motion as predicted
by the Applied Physics Laboratory's simulations would precess less than l°

from this point. Although this approach was tried, it was abandoned

primarily because the drift bounds was increased to 60 and this significantly
reduced control torques to a more tolerable level. When the Applied Physics

Laboratory's suggested control approach was tried, two problems were evident.
First, maneuvering the spacecraft to a specific target to within l° was not

a simple task. This type of maneuver was accomplished by closing the drift
threshold to force the ASP to automatically torque the spacecraft to the

desired target. The coarseness of the control system and coupling of right
ascension motion with declination maneuvers and vice-versa did not permit

accurate placement of the spacecraft's Z axis. This can be seen in figure

lO. A second problem was that the desired target was dynamic. This was

suspected in prelaunch analysis, but no estimates of the target's variability
were made. Figure 12 shows the location of the apparent target attitude

determined from the drift tracks during various periods of the mission.

At one time it was postulated that the target location was a function of
the latitude and altitude of perigee. This cannot yet be substantiated,

although the target appears to want an offset in right ascension when perigee

is at the poles. One period of operation does seem to validate the findings

of the Applied Physics Laboratory's simulations. Between March 5-27, 1980,
a very stable drift period existed. The net orbital drift track for 5 days

during this period is given in figure 13. During this time the spacecraft

remained close to its i_rim attitude, never precessing away from this point

by more than l°.

Concerning the size of the control threshold relative to control torque

frequency, evidence certainly suggests that a further reduction in the' number

of control torques may have been achieved by using larger control threshold.

An example of this can be seen in figure lO. The Z axis precession was

following what appears to be a stable circular track about a trim point before
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it crossed the control threshold. Had the threshold been larger, the

precession would have probably continued on the track pattern established.

Figure lO shows that two control torques would have been averted since
coupling from the first (declination) torque necessitated a second (right

ascension) torque. The main reason for not opening the threshold further
was the 12o roll restriction with the IR horizon scanner had to be respected.

It should also be kept in mind that real time data available during the

mission could not supply analysts with the complete picture of the drift
tracks which are now available from definitive data.

The importance of the aerodynamic trim boom cannot be minimized. In

fact, the trim boom was a vital, if not essential tool for reducing drift.

Sixteen boom operations were performed during the mission including lO which

took place following an initial 3-week period of trimming during Magsat's
early mission phase. Boom operations have been marked on the histogram of

control torques given in figure 8 so that the effectiveness of the trim
boom can be clearly seen. Boom operations on November 20, 1979, and

March 4, 1980, were followed by extended periods of nearly 3 weeks with low

drift and no control coil activity. Perhaps the best example of what trim

boom operations can accomplish can be seen in figure 14. Presented are

drift tracks for 2 to 3 orbits on 4 days in late November 1979 with four

different trim boom positions. Net orbital drift was significantly reduced.

Because of orbit eccentricity and variations in the spacecraft attitude,

the yaw torque was always variable over the orbit regardless of the boom

length. The general approach to trimming with the boom was to assume an

imbalance in the yaw torque could be corrected only when the spacecraft was

at perigee. Thus, when perigee was at either pole, boom extensions or

retractions could be made to change yaw torque which would affect declination

drift. Likewise, changes with perigee at the equator were made to reduce right
ascension drift. Whil_ in practice the above approach proved adequate, the

general lack of experience in working with a trim boom necessitated a certain

degree of trial and error with this operation. Although a large degree of
confidence was placed in the direction of boom change, the magnitude of these

changes to affect an increase or decrease in yaw torque was always questionable.

Typical changes in boom length were 25 cm. Some prelaunch analysis suggested

that command sequences for extending or retracting the boom should be in 2 cm
increments (reference 4).

Current postmission analysis is involved in a more detailed examination

of the aerodynamic effects using definitive attitude data which is now avail-

able, and also critiquing drift control operations with the spacecraft's

aerodynamic trim boom. Here, it is instructive to point out the nature of
the drift patterns observed. Also, rather than take a theoretical approach

to explaining how drift might be reduced, periods of relatively low drift
can be examined with special attention to the trim boom configuration and

target attitude which provided low drift. Two periods of low drift are

summarized below. One period corresponds to a very stable drift period

beginning around March 5 and lasting until March 27, 1980. During this

period, perigee was located at or near the descending node. The second
period covers the first week in January 1980 when perigee was at or near the
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South Pole. Examination reveals the existence of different conditions for

minimal drift as perigee altitude and location change.

The March period is interesting because it was a time during the mission

with very low drift (less than 20 net drift per day) and perigee located near

the descending node. The trim boom was retracted 25 cm to 489 cm immediately

preceding this period. Figure 15 shows right ascension, declination and yaw

versus time for two Magsat orbits on March 17, 1980. Time of perigee crossing

is also marked. Plots of these parameters for other orbits during this March
period are nearly identical. The plots seem to contradict what was once

advanced prelaunch as a possible drift control philosophy, namely to balance

out yaw torques completely at perigee. Instead, as the right ascension plot

in figure 15 shows, the spacecraft undergoes maximum drift due to yaw torque

at perigee. Thus, what becomes important is not simply the balancing of

drift at one point in the orbit, but to affect the drift at perigee in a way

such that net orbital motion is reduced. Here, the high torques at perigee

are adjusted to zero out the torque over the orbit. As can be seen in figure
15, the right ascension versus declination plot is a closed circle indicating
little net orbital drift.

During this period, the Z axis precessed in a circle about a relatively

stable trim point located 50 above negative orbit normal with little right
ascension offset. The diameter of this circle was less than 20 and was

traversed in approximately 4 days (figure 13). Note that since the trim

point was located directly above negative orbit normal in declination that

the maximum yaw angle was at perigee.

The second study case with representative plots given in figure 16 is

taken from early January 1980. Although not as nice as the stable period

in March, Magsat's drift during this January period was less than 30 per

day and was relatively free of control torques. The Z axis precessed about

a trim point 5.50 above negative orbit normal in declination with a period

of 5 days and traced out a circle with diameter of 40 . The trim boom length

was 448 cm. Unlike the March period, perigee was near the South Pole during
early January. With the trim point still above negative orbit normal in

declination and only a small offset in right ascension, the yaw angle was
not at its maximum value at perigee. Unlike the March period, there is

drift in both right ascension and declination at perigee. Here, a balance

in the yaw torque appears to occur near maximum yaw with both declination

and right ascension drifts near minimum. The implication of this simple

examination with perigee at the South Pole is that balancing the torque at

maximum yaw is a valid, if not optimum control approach rather than balancing

the torque at perigee. This perhaps shows the significance of torques due

to high yaw angles near the nodes (where superrotation effects are largest)

relative to torques at perigee when perigee is at a pole. Certainly this
is a simplistic conclusion which will be examined in more detail. The

eccentricity of the orbit, latitude of perigee, variation of aerodynamic

effects with altitude and target placement (which will effect the phasing
and magnitude of yaw) must be considered further.
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V. Closinq Remarks

While analysis is continuing, some abstract conclusions can be drawn
regarding the attitude control of Magsat. First, the ASP was essential for

successful completion of the Magsat mission. Ground control, especially

during the closing months of the mission, would have most likely been met

with frustration and failure. Although drift was often low and manageable
when the spacecraft was properly trimmed, this state was always achieved as

a result of active adjustment of various ground supplied ASP parameters and

the aerodynamic trim boom. In terms of performance, the ASP successfully

satisfied all onboard control requirements. During times of high drift

activity, the ASP displayed its effectiveness by maintaining Magsat within
its prescribed control bounds. Ground control would not have been able to

respond in time to violations of these control bounds. The importance of

active ground monitoring of spacecraft attitude health and safety has been

shown. The effectiveness of the ASP must be attributed, in part, to success-
ful ground support.

Any optimum control philosophy for Magsat must be complex. The effects

of boom length and perigee location on the spacecraft's trim point are not

fully understood. At least two sets of conditions may exist for minimizing

drift. Studies of the uniqueness and stability of the trim point are
currently underway.
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THE RESPONSE OF THE SEASAT AND MAGSAT

INFRARED HORIZON SCANNERS TO COLD CLOUDS

S. Bilanow and M. Phenneqer

Computer Sciences Corporation, Silver Spring, Md.

ABSTRACT

Cold clouds over the Earth are shown to be the principal

cause of pitch and roll measurement noise in flight data

from the infrared horizon scanners onboard Seasat and Magsat.

This paper discusses the observed effects of clouds on the

fixed threshold horizon detection logic of the Magsat scanner

and on the variable threshold detection logic of the Seasat

scanner. National Oceanic and Atmospheric Administration

(NOAA) Earth photographs marked with the scanner ground trace

clearly confirm the relationship between measurement errors

and Earth clouds. A one-to-one correspondence can be seen

between excursions in the pitch and roll data and cloud

crossings. The characteristics of the cloud-induced "noise"

are discussed, and the response of the satellite control

systems to the cloud errors is described. Changes to the

horizon scanner designs that would reduce the effects of

clouds are noted.

INTRODUCTION

The postlaunch evaluation of data from the Seasat and Magsat

infrared (IR) horizon scanners has shown that cold clouds

over the Earth are the principal cause of pitch and roll
]

measurement noise-. This paper discusses the measurement

1Note that cold clouds are cited here as the principal cause

of noise in IR scanner attitude data; this does not neces-

sarily mean that they are the principal source of error in
the attitudes. _--
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errors that are caused by clouds. An understanding of IR

scanner response to cold clouds is important for the deter-

mination of the attitude accuracy achievable using IR

scanners. It is also important because control systems such
as those of Seasat and Magsat use the IR scanner data as

input to the control law. Most important, an accurate under-

standing of the scanner response to clouds can aid in the

design of future scanners that will show less sensitivity to

clouds.

The following sections of the paper will present a brief

description of the Seasat and Magsat IR Earth sensor imple-

mentation and technology; a discussion of how cold clouds

modify the Earth radiance profile in the infrared and how

this affects the IR sensor Earth chord measurments; visual

evidence for the cold cloud effects in the Seasat attitude

data and confirmation of the coincidence of this effect in

the Seasat and Magsat data with passage over clouds in the

Earth IR photographs; visual evidence for cold clouds in

the Magsat IR scanner data derived from comparisons with

star camera attitudes; and a discussion of observations and

conclusions concerning the technology of attitude sensing

using IR scanners.

BACKGROUND

The Seasat IR attitude sensors were a pair of ITHACO Scan-

wheels ± located on the left and right side of the spacecraft

at 90 degrees to the nominal velocity vector and tilted 26

degrees below the horizontal, with 45-degree scan cones.

This configuration is illustrated in Figure I. The space-

craft flew in a nominal Earth-oriented attitude with a pitch

iScanwheel is a registered trademark of ITHACO, Inc.
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Figure i. Seasat IR Scanner Configuration

rotation rate of 1 revolution per orbit. Although Seasat

was designed to operate in a dual-IR-scanner mode, problems

with Sun interference in the left scanner forced the use of
1

a single-IR-scanner control mode. The pitch and roll were

derived in an onboard analog processor from the right IR

scanner Earth chord measurement, according to the following

equations:

(_LOS _AOS)pitch = Kp
(1)

roll = Kr(_AOS + _LOS _ d0) (2)

1pitch is a right-handed rotation about negative orbit nor-

mal; roll is a right-handed rotation about the spacecraft

velocity vector for a circular orbit.
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where _AOS and _LOS are the horizon-to-spacecraft-index

dihedral angles for the sky/Earth and Earth/sky portions of

the scan, respectively, and _0' Kp, and Kr are constants
based on the nominal Earth chord and the partials of pitch

and roll with respect to _AOS and _LOS. The Earth horizon

was detected using a normalized threshold method as illus-

trated in Figure 2. The horizon threshold was automatically

adjusted to be 40 percent of the average of the Earth pulse

amplitude between 5 and ii scan degrees from the acquisition

of signal (AOS) and loss of signal (LOS) horizons.

The Magsat Earth sensor was an ITHACO Scanwheel dual-flake

IR sensor located 90 degrees to the nominal velocity vector

in the horizontal plane on the left side of the spacecraft,

with a 45-degree scan cone. The Earth horizon was sensed

using a fixed-threshold locator logic, and the pitch and roll

for Magsat were determined onboard. The ground processing

A2
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D
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<
_- 0.4A2

0.4AI
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COMPUTATION
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I

LOS THRESHOLD

COMPUTATION

I

I
I
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I
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I _'_' .=n
9O
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Figure 2. Seasat Horizon Locator Logic Applied to the

Output from the Bolometer Signal Processing

Electronics
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software for both Seasat and Magsat refined the pitch and
roll measurements to account for Earth oblateness, spacecraft

altitude variationS, and seasonal systematic Earth radiance

variation effects.

EARTH RADIANCE VARIATION EFFECTS

The IR scanners operate in the 15-micron carbon dioxide (CO 2)

absorption band to avoid large weather-dependent changes that

occur in the Earth radiation above and below this wavelength.

Figure 3 illustrates the spectrum of infrared radiation for

a nadir view of the Earth for different geographical loca-

tions on April i0, 1970. It can be seen that the intensity

in a narrow region centered on 15 microns (660 centimeters -1 )

shows less dependence on the surface that is viewed.

The effect of clouds on the infrared Earth radiation spectrum

was simulated by Keithly and Uplinger at Lockheed Missiles

& Space Company (LMSC) (Reference I). Results from their

work are illustrated in Figure 4 for a nadir viewing angle

at the Equator. The simulation was accomplished by comput-

ing the Earth infrared radiation spectrum using a standard

atmosphere model and integrating the emitted and absorbed

radiation from different starting altitudes to the top of

the atmosphere to simulate total absorption of the IR Earth

radiation by low, medium, and high cold clouds. An estimate

of the effect of the clouds on the Earth radiation signal at

the nadir viewing angle for the Seasat and Magsat IR sensors

can be made by comparin_ the IR sensor frequency response

functions illustrated in Figure 5 with the radiation spectra

for different cloud heights in Figure 4. Integrating these

cold cloud radiation spectra through the Seasat IR scanner

bandpass showed that high cold clouds can lower the Earth

pulse in the threshold computation regions of the scan
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Figure 4. Radiance Variation in the Presence of Clouds
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by 30 percent (References 2 and 3). The effect of this is
to lower the threshold voltage and increase the Earth chord
at the A0S or LOS portion of the scan. The effect of this

on the roll and pitch for Seasat, computed in Equations (i)
and (2), is to increase the roll for clouds at both AOS and

LOS horizons and to decrease the pitch at AOS and increase

the pitch at LOS. The timing of cold-cloud-induced errors

between AOS traversal and LOS traversal for the Seasat orbit

is approximately 5 minutes. As the spacecraft moves along

the orbit, the roll signal should show two positive pulses

separated by 5 minutes, coincident with a negative and then

a positive pulse in pitch, respectively. A schematic illus-

tration of error signals from the Seasat IR sensors resulting

from clouds of various sizes and locations is illustrated in

Figure 6.

Seasat's Response to Clouds. Flight data from Seasat showed

many striking examples of the isolated cold cloud signature.

One example is shown in Figure 7, where a simultaneous

negative excursion in pitch and a positive excursion in roll

are followed 5 minutes later by simultaneous positive excur-

sions in pitch and roll.

The Seasat pitch and roll values plotted in Figure 7 and the

following figures were computed in the onboard analog proc-

essor and telemetered to the ground. The definitive pitch

and roll, which were computed on the ground, used the data

and added corrections for the effects of biases, Earth

oblateness, satellite altitude variations, and seasonal

systematic horizon radiance variations. These corrections

are not required for the demonstration of the cold cloud

effects. The observability of clouds in these data is

dependent on the fact that the control system responds slowly

to the pitch and roll error signals. The Seasat control

system was designed to hold the spacecraft at zero pitch,
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roll, and yaw for a long time. If the spacecraft control

system responded quickly to the errors from clouds, the
pitch and roll voltages would be kept at zero while the

spacecraft would rock back and forth in response to each
cloud on the horizon. Because the roll control response is

slower than the pitch response, the cloud effects are more

clearly visible in the roll data.

Evidence of cold cloud signatures can be seen throughout the

12 orbits of pitch and roll data shown in Figures 8 and 9,

respectively. The data was gathered from 12 consecutive or-

bits on October 2, 1978. Isolated clouds stand out as pairs

of peaks in the roll data separated by 5 minutes. The cloud

effects are harder to discern among the larger oscillations

in the pitch data; nevertheless, the negative-positive signa-

ture in pitch can be picked out at the times when large

clouds show their signatures in the roll data. Evidence

exists in Figure 8 that the cold cloud anomalies helped

induce some usc_±lations in _ _

To confirm that the cold cloud signatures in these data

illustrated in Figures 8 and 9 correspond directly to fea-

tures in the Earth IR image, photographs were obtained from

NOAA of the Earth at the time of these data. Figure l0

shows an IR image of the Earth taken over the Pacific Ocean

from the western Geosynchronous Operational Environmental

Satellite (GOES) at 17:45 Greenwich mean time (GMT) on

October 2, 1978. The IR scanner Earth scan is overlaid

at two positions in the Seasat orbit, corresponding to 8:53

and 9:03 GMT. In each of these scans, the threshold computa-

tion regions from 5 to ii scan degrees from the AOS and LOS

horizon are marked. In Figure ii, the ground track of the

middle of the threshold adjust regions is traced over four

orbits, assuming a nominal attitude. The AOS threshold ad-

just track occurs to the west of the LOS threshold adjust
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Figure 9. Seasat Roll Telemetry for 12 Orbits

on October 2, 1978 Illustrating Cold

Cloud Anomalies at the North and South

Equator Crossings
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track because of the Earth rotation effects. Since cloud

patterns do not change greatly during the timespan of four

orbits, these ground tracks can be used to predict the cloud
effects that will be seen near the descending node in orbits

4, 5, 6 and 7 for the data in Figures 8 and 9. Comparison

of Figure ii with Figures 8 and 9 confirms that excursions

in the pitch and roll data result from clouds visible in the

IR photograph. In orbit 4, the threshold adjust region

passes an isolated tropical storm, near 5:37 GMT; in orbit

5, no cloud is passed at the Equator; and in orbit 7, several

large cloud systems are encountered simultaneously in the

AOS and LOS. Numerous examples in the data can be corre-

lated with the visual information in Figure ii with a more

detailed analysis.

Magsat's Response to Clouds. The procedures developed for

Seasat cloud noise identification were applied to Magsat

mission data analysis. The results of the cloud error

analysis for Magsat are summarized below.

The signature of an isolated cloud in the Magsat data is

a positive error followed by a negative error in pitch and

two positive errors in roll. It differs from the Seasat

signature because of differences in the horizon iocator

logic and the scanner mounting positions. The time separa-

tion between the AOS and LOS encounter of a cloud is approxi-

mately 4-1/2 minutes for the Magsat orbit and scan geometry.

Two Fixed-Head Star Trackers and a high-resolution Sun sensor

provided an accurate attitude reference for evaluating the

Magsat IR scanner data.

Figures 12 and 13 show the differences between the pitch and

roll computed from the IR scanner and the pitch and roll

computed from star camera data for 14 orbits on December 28,

1979. Numerous cold cloud signatures appear in these data.

Orbital frequency systematicerrors are also present,
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especially in the roll data. As of this writing, those syste-
matic errors are nob well understood. The large roll resid-

uals may be due to systematic horizon radiance variations.
The effects of satellite altitude variations and Earth

oblateness were eliminated in the computation of IR scanner

pitch and roll, but systematic horizon radiance variations

were not. An anomaly in the data which regularly occurs

just past the minimum subsatellite latitude crossing has

been tentatively associated with the momentary shading of

sunlight on the IR scanner by an aerodynamic trim boom on

Magsat.

Detailed comparisons of the noise in the Magsat IR scanner

data with Earth IR photographs were made, as was done for

Seasat. These comparisons demonstrated that nearly every

short-period excursion in the IR scanner data could be asso-

ciated with cold cloud features on the Earth. The exception

was the feature that was associated with the trim boom shading

of the Sun. Figure 14 indicates specific cloud crossing

events that were identified in 3 hours of pitch data. This

figure a!se demonstrates that the high-frequency electronics

noise in the pitch is effectively reduced with a simple 8-

data-point average.

The response of the Magsat control system to a cold cloud

crossing can be seen in Figure 15, where star camera pitch

solutions are compared to the IR scanner pitch data. The

control system responds to the pitch measurement error as if

it is a true error in the pitch of the spacecraft. Thus,

when the pitch measurement rises positive as the AOS portion

of the Earth scan views the cloud, the control system moves

the true pitch in the negative direction. When the LOS

portion of the Earth scan views the cloud and the pitch

measurement falls negative, the control system drives the

pitch back in the positive direction.
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The clouds that show their signatures in Figures 12, 13, and
14 are much larger in the northern latitudes than in the
southern latitudes. There are several possible explanations

for the effect. First, the radiation from the CO2 band is
weaker in the winter hemisphere. Therefore, the radiation

from outside the CO 2 band, which is influenced by clouds,

may contribute a larger percentage of the total radiation

incoming to the bolometer. Second, a fixed temperature

difference between cloud top and ground means a greater per-

centage change in radiance for lower temperatures. A third

explanation requires some understanding of the Magsat sensor

signal processing electronics. In the electronics, the

signal from the bolometer is passed through a preamplifier

and a peaking amplifier, and then it is clipped at 1.2 volts,

a level that is intended to correspond to a minimum Earth

pulse height. If the signal level at this time is actually

smaller than 1.2 volts, the response to this change in the

noise filter that follows will cause the horizon detection

error to be somewhat amplified. It is obvious that care

should be taken to ensure that fixed-threshold horizon sensors

do not trigger near the minimum Earth signal for the mission.

CONCLUSIONS AND RECOMMENDATIONS

Straightforward procedures have been developed for demon-

strating that features in the IR scanner attitude data from

the Seasat and Magsat missions correspond to meteorologicai

features in the Earth's atmosphere. These procedures were

made possible in part by NOAA's distribution of Earth imagery

data from operational weather satellites.

From these procedures, it has been proved that cold cloud

effects and other systematic Earth radiance variation effects

dominate a large portion of the IR scanner attitude data for
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the Seasat and Magsat missions. Proof of the origin of these
noise features in the IR scanner data further justifies

efforts to upgrade the IR sensor technology and the data

processing software. Methods have been developed or are
being developed at Computer Sciences Corporation that facil-

itate the study of changes in IR scanner technology in the

area of spectral response function and signal processing and

horizon triggering electronics. More work using the data

analysis described above is needed to upgrade the qround

processing software to reduce errors associated with random

and systematic horizon radiance variations.
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ABSTRACT

This paper describes techniques appropriate for implementa-

tion onboard the Space Telescope and other spacecraft to

manage the accumulation of momentum in reaction wheel con-

trol systems using magnetic torquing coils. Generalized

analytical equations are derived for momentum control laws

that command the magnetic torquers. These control laws

naturally fall into two main categories according to the

methods used for updating the magnetic dipole command:

closed-loop, in which the update is based on current meas-

urements to achieve a desired ...... e i _°__'I_I_' _

open-loop, in which the update is based on predicted infor-

mation to achieve a desired momentum at the end of a period

of time. Each control law is further categorized by the

physical quantities (e.g., energy, wheel speed, etc.)

selected for minimization. Physical interpretations of con-

trol laws in general and of the Space Telescope cross prod-

uct and minimum energy control laws in particular are

presented, and their merits and drawbacks are discussed. A

new technique is introduced to retain the advantages of

*Work supported by the Spacecraft Control Programs Branch,

Goddard Space Flight Center, National Aeronautics and Space

Administration, under Contract NAS 5-24300.
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both the open-loop and the closed-loop control laws. Simu-

lation results are presented to compare the performance of

these control laws in the Space Telescope environment. The

results discussed in the paper can be extended to the Multi-
mission Modular Spacecraft (MMS) series and similar missions.

INTRODUCTION

The Space Telescope (ST) is an astronomical observatory to

be launched in 1984 by the Space Shuttle into a nominal

500-kilometer circular orbit. The Pointing Control System

provides the attitude reference and control stability for

the ST. The most challenging requirement of the Pointing

Control System is the pointing stability of 0.007 arc-second

(one sigma). To achieve this stability required in the fine

point mode, vibrations generated by the rotating reaction

wheels must not excite significant ST bending modes.

Two momentum management control laws have been proposed by

Lockheed Missiles & Space Company (LMSC) for desaturating

the ST reaction wheels, namely, the cross product (CP) con-

trol law and the minimum energy (ME) control law. The CP

law is a closed-loop control law that computes a control

magnetic dipole based on current measurements to achieve a

desired torque instantaneously. The ME law is an open-loop

control law that generates the magnetic dipole commands

b_sed on predicted information to achieve a desired momentum

at the end of a period of time, and at the same time mini-

mizes the energy consumption by the magnetic coils. More

detailed descriptions of ST momentum management procedures

are given in Reference 1 and 2.

To further understand and compare these control laws, we

have derived generalized analytical equations for spacecraft

momentum management using magnetic torquers and have studied
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their physical interpretations. As a result of this study,
a new technique, referred to as the "mixed-mode" control

law, has been introduced to retain the advantages of both

closed-loop and open-loop control laws. The momentum man-

agement procedures during maneuvers were also investigated

for the original technique and for the new technique. To

support the current study, a simulator has been implemented

to enable quantitative comparison of the performances of
various control laws.

In this paper, the generalized analytical equations are pre-

sented first and interpreted. Then the merits and drawbacks
of each type of control law are discussed and the basis for

the new mixed-mode technique is introduced. The CP and ME

laws currently implemented for ST are then described ana

discussed as special cases. Finally, the expected advan-
tages of the mixed-mode control law over the current CP and
ME laws for ST are summarized. The simulation results are

not included in this paper because they have not been com-

pletely analyzed at this time. However, the simulation re-
=u_ _ _.... cipate _ to be presented in the Symposium.

GENERALIZED ANALYTICAL EQUATIONS AND

PHYSICAL INTERPRETATIONS

In general, a desaturation control law is a method of re-

ducing the buildup of spacecraft momentum due to external

environmental torques by generating a magnetic torque re-

sulting from the interaction between the geomagnetic field

and the commanded magnetic torque_s situated on the space-

craft.

There are two fundamental distinctions that characterize a

control law: the type of control and the minimization cri-

terion. Each control law can in general be put into one
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of the two main categories, depending on its type of

control--closed loop or open loop. In a closed-loop control
law, the magnetic dipole command is updated using instan-
taneous measurements with the intent to achieve a desired

torque at each update time. In an open-loop control law,

the magnetic dipole command is updated using predicted in-
formation with the intent to achieve a desired momentum at

the end of each update period. In addition to these funda-
mental differences, the control laws can be further cate-

gorized oy their minimization criteria. To achieve a

desired torque or momentum, there is usually one degree of

freedom in commanding the magnetic torquers. This degree of
freedom can Oe used to select one quantity to minimize, SUCh

as t_e energy consumption or the reaction wheel speed.

rne minimization criterion is completely independent of the

control type. That is, every control law can De either

closed loop or open loop regardless of which quantity is

minimized. This categorization of control laws is illus-

tra_ed in Figure i. Thus, to specify a control law clearly,
it is necessary to specify not only the minimization crite-

rion Out also the control type. In principle, a minimum

energy law can Oe either a closed-loop law or an open-loop
law depending on now the magnetic dipole command is gener-

ated. The ST tradition of using "CP law" to represent a

closed-loop law and "ME law" to represent an open-loop law

is confusing from a p_ysical point of view. In the

remainder of this paper, a control law is defined oy speci-

fling its control type followed oy its minimizaton crite-

rion, e.g., "closed-loop ME law" or "open-loop minimum wneel

speed law." When a particular control law implemented for

Sr is referred to, the word"original" or "current" will be

used to distinguisa it from other control laws. For in-

stance, the "current ME law" represents the ME l_w
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CONTROL LAWS
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Figure i. Categorization of Control Laws
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implemented currently for ST, which actually is an open-loop

ME law.

Table 1 presents the generalized analytical equations for

all control laws using magnetic torquers. In the table,

is the desired torque, which is the torque a closed-

loop control law is attempting to achieve momentarily

through the interaction between the magnetic torquers and

the geomagnetic field. Here HD, which is defined for

open-loop control laws only, is the integration of the de-

sired torque over a period of time (called the desaturation

period). Physically, -_D is the desired momentum an open-

loop control law attempts to achieve over the desaturation

period through the interaction between the magnetic torquers

and the geomagnetic field. Thus, the fundament_l difference

between the open-loop and the closed-loop control laws is

that the former attempts to achieve T D momentarily,

whereas the latter attempts to achieve H D over a desatura-

tion period. The determination of _D and-_D depends on

the individual control law. However, good momentum manage-

ment relies on proper determination of T D and H D. One

reasonable way of defining and H D is to assume that

the gravity-gradient torque-_GG is the only significant

environmental torque acting on the spacecraft. In this case,

where _ T is the total system momentum which equals the

reaction wheel momentum H_W at inertial attitudes. For a

closed-loop control law, H T in Equation (i) is usually

replaced by -KM(H-_T + H-_B) , where K M is a positive

constant called the magnetic gain and H B is a bias vector

that is added to H T to keep the reaction wheel speed cen-

ter at zero. For an open-loop control law, Equation (i) is
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integrated over the desaturation period to give the desired

%" T[_at is,momentum

1

Stf= H_T(tf) - -_T(ti ) - -_GG dt
i

(2)

where HT(tf) is the desired total momentum at the end of

the desaturation period and HT(ti)_ is the measured total

momentum at the start of the desaturation period. The

length of the desaturation period controls the magnitude and

of -_D. Nominally, the desaturation perioddirection is

set at half an orbital period to include the major varia-

tions in the geomagnetic field and to be compati01e with the

period of the gravity-gradient disturbances so that only the

nonperiodic portion of the accumulated gravity-gradient mo-

mentum is dumped.

The weighting matrix A of Table i can De either an identity

matrix or one of the mounting matrices, depending on the

minimization criterion selected for the control law. For

instance, A is the magnetic coil mounting matrix, M, for a

minimum energy control law and is the reaction wheel mount-

ing matrix, W, for a minimum wheel speed control law. For

any orthogonal system, A is the identity matrix, and in the

following discussion A is assumed to be the identity matrix.

The costate vector P is defined differently for the closed-

loop and open-loop control laws. For a closed-loop control

law, -_ is the desired torque _eignted by I-_I -2, wnere-_ is
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the geomagnetic _=ield. For an open-loop control law, P is

the desired momentum weighted by both the magnitude and the

direction of the geomagnetic field over the desaturation

period. The physical meaning of P for an open-loop control
law is illustrated in Figure 2 with the assumption that the

magnitude of -_ is constan_ in time. As shown in Figure 2, -_

is a fictitious torque whose component along the direction

normal to the instantaneous geomagnetic field is the instan-

taneous magnetic torque, TM, generated oy the torquers.
fne integration of _M over the desatura_1on period is
equal to HD. Tne costate vector P in an open-loop control

A-law is analogous to the desired torque in a ciosed-loop

control law after being properly weighted.

Figure 2 also illustrates the significance of the desatura-

tion period for an open-loop control law. Three cases

covering different desaturation periods are shown in Fig-

ure 2. W_]en the desaturation period is very short, as il-

lustrated in Figure 2(a), P approaches infinity due co the

near-singular condition. In this case, the magnetic tor-

quers are given poorly defined commands with the result that

the magnetic torques generated may go througn an undesiraole

path before 5he desired momentum is achieved. Tnis is shown

in Figure 2(a), where tne magnetic torque _MI is along a

direction almost opposite to the direction of the desired

momentum HD. this can cause a very high reaction wheel

speed at the end of tl, which is undesiraole. Thus, an

open-loop control law operated under very snort desaturation

periods can sometimes lead to serious consequences. As zne

desaturation period increases as ShOWn in Figure 2(b) and

(c), the costate vector P oecomes oetter defined an_ the

path of the magnetic torques becomes closer to the desired

momentum.
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Once the costate vector is determined, the remaining quanti-

ties of the control laws are computed through an identical

set of equations for both the closed-loop and the open-loop

control laws. The system magnetic dipole moment _M is the

magnetic dipole moment (defined in the spacecraft body co-

ordinate system) that is required to generate the desired

torques• The magnetic torque-_ M is the actualmagnetic

instantaneous magnetic torque generated from the interaction

between the magnetic torquers and the geomagnetic field.

The magnitude and direction of-_ are as follows. For a

closed-loop control law, -_M is tne component of-_ D that

is normal to B. This component is the best torque that can

be achieved because T_M will be perpendicular to-_, al-

though ideally it would be desirable to generane a _M that

equals T-D. Depending on the minimization criterion, when

the weighting matrix A is different from the identity, the

magnitude and direction of T M differ slightly from those

described aoove. For an open-loop control law, T M is also

perpendicular to B at any moment• However, in this case

T also satisfies the condition that its integrated effectm

over the desaturation period equals the desired ..... _,_m_LL_LL_ L L _ _ ill f

• That is, T M satisfies the condition that

if __ dt = -_DT M

i

(3)

This indicates that although the desired torques cannot al-

ways be generated momentarily, the desired momentum can

usually De generated over a period of time, taking advanSage

of the variations in the geomagnetic field. This forms one

major advantage of an open-loop control law over a closed-

loop control law.
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The last item in Table 1 is the commanded magnetic dipole

moment _T" The components of _T give t_e actual dipole
moment required by each of the magnetic torquers to generate

the magnetic torque 7_M, and _ is the final output of a
control law sent to the magnetic torquers.

COMPARISONS AND DISCUSSIONS

Both the closed-loop and the open-loop control laws have

their merits and drawbacks. Tne greatest problem of a

closed-loop control law is that it attempts to achieve a

desired torque momentarily, which is impossible in general.

The closed-loop control law produces a magnetic torque that

component of T'D normal to the geomagneticis the field.

This effectively projects ther resultant torque into the

direction of the geomagnetic field, which is an unfavorable

direction for further reduction of the momentum. As a re-

suit, a great deal of energy is wasted in changing the di-

rection rather than reducing the magnitude of the momentum.

Furtnermore, the closed-loop control law attempts to always

reduce the same fraction of the total momentum as controlled

by the magnetic gain KM, regardless of the variation in

geometry. This is not efficient, because the law should

always attempt to dump more momentum when the geometry is

favorable and less momentum at an unfavorable geometry. In

addition, the closed-loop control laws attempt to dump both

the periodic and the nonperiodic gravity-gradient momenta,

while only the nonperiodic portion needs to be dumped in

most applications. These problems associated with the

closed-loop control laws are eliminated in the open-loop

control laws, because the open-loop control laws always look

at the situation ahead of time to take advantage of the

variations in geometry to dump tne proper amount of momentum

at the proper time. Thus, at the end of the desaturation
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period, the exact amount of desired momentum will be gener-

ated from the torquers.

The open-loop control laws are ideal if actual performance

is exactly as predicted. However, in case of modeling

errors or undetected failure conditions, reality can be very

different from the prediction. This difference will not be

known until the end of the desaturation periods, which may

be too late for correction. To resolve this potential prob-

lem, LMSC modified the open-loop control for ST so that a

half-orbit desaturation period is used in computing the nom-

inal momentum profile _NO M on the ground; then H-_NOM is

used as the targeting momentum (HT(tf) of Equation (2))

in computing _D on board where a much shorter desaturation

period is used. With this modification, the advantages of

the open-loop control laws are kept by forcing the system

momentum to follow the same time variation it would follow

if a nail-orbit desaturation period were used under nominal

_ituations. At _ __n_ same time, the disadvantage of tne

open-loop control laws is reduced by decreasing the duration

o[ the u_=uu_ation per_ _=._............_h_ _n_ actual system, momen-

cum can De measured at a much higher frequency, and the 3e-

viation between the reality and the prediction can De

included in HA and corrected for at this new frequency.

In principle, with a precomputed H-_NOM, the shorter the

update period the better, if undetected failure conditions

exist. However, as shown in Figure 2(a), making the desat-

uration period of an open-loop control law arOitrarily short

may cause the costate vector P to be ill defined and result

in very undesirable momentum before the desired momentum is

achieved. For this reason, a 600-second desaturation period

with a 200-second updating frequency was recommended in the

current momentum management implementation for ST.

24-13



If instead of using an open-loop control law at a reduced
desaturation period, a closed-loop control law is used witn

the precomputed HNOM, the proolem of determining -_will no
longer exist. In this technique, which we refer to as a

mixed-mode control law, the updating frequency of P can be
reduced to the frequency of the closed-loop control laws,

which is approximately 50 seconds for ST. To accomplish

this, the desired torque at any time t will be computed with

the following equation, which is directly obtained from

Equation (i) :

At[HNoM(t + At) - HT(t)] - TGG(t ) (4)

where At is the updating frequency for the closed-loop con-

trol law and HNO M is the nominal momentum profile computed

previously on the ground based upon an open-loop control law

witn a half-orbit desaturation period. The desired torque

so determined is always nearly perpendicular to the instan-

oecause-_NO M is computed fromtaneous geomagnetic field

the nominal magnetic torques, which are momentarily perpen-

dicular to B. This mixed-mode control law, which is a

closed-loop control law operated with an open-loop H_OM,

seems to retain the advantages of both the open-loop and the

closed-loop control laws and is Oelieved to be the pest

technique for momentum management. This mixed-mode control

law is further described later in this paper.
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CURRENT ST IMPLEMENTATIONS

the current CP law implemented for ST is a closed-loop law

that minimizes the reaction wheel speed. Thus, the desired

torque T-_D and weighting matrix A of Table 1 are given by

(5)

_! -a a -a]
A = W = -b b b

-_ -o -b

(6)

where a = sin 20 degrees and b = i/_--cos 20 degrees. Tne

current ME law implemented for ST is a modified open-loop

control law that minimizes the coil energy consumption. In

this control law, a nominal momentum profile _NO M is com-

puted on the ground for each of _he inertial attitudes using

a half-orbit as the desaturation period. This -_NO M is

then used in the determination of -_D on board where a

shorter desaturation period (600 seconds) and updating fre-

quency (200 seconds) are used. As'discussed earlier in the

paper, the purpose of this modification is to reduce the

error made in an open-loop control law in case undetected

failure conditions exist. Thus, the desired momentum _ D

and the weignting matrix A of Taole i are given by tne fol-

lowing equations for the current ME law:

-_D = _NOM (tf) tf _,- _RW(ti) - rGG (7)
i
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where t i is updated every 200 seconds and tf
+ 600 seconds.

= t i

A = M =

S S S S

C -C -C C

C C -C C

(8)

where s = sin 35.26 degrees and c = i/v_-cos 35.26 degrees.

Notice that in the determination of H D for the current ME

law, the total momentum H T given in Equation (i) has Oeen

replaced by tne reaction wheel momentum HRW. This is due

to the special way in which the current ME law is imple-

mented, which does not require the knowledge of the system

momentum during maneuvers. In the case of maneuvers, the

normal mode of operation of the current ME law witn a

600-second desaturation period and 200-second updating fre-

quency is terminated. It is re_laced by a single maneuver

desaturation period that includes a lead time before the

start of the maneuver and a lag time after tne end of the

maneuver. Thus, the length of the maneuver desaturation

period depends on the lengths of the maneuver and the lead

and lag times. In the current onboard implementation, each

maneuver has a single lead/lag time that will be determined

on the ground and uplinked to the spacecraft with the maneu-

ver commands. This requires some ground software support in

addition to the _OMN determination.

PROPOSED MIXED-MODE CONTROL LAW

As mentioned earlier in the paper, the mixed-mode control

law, which retains the advantages of both closed-loop and
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open-loop control laws, seems to be a good choice for momen-

tum management using magnetic torquers. For the case of ST,

the mixed-mode minimum wheel speed law, which is a closed-

loop control law operated with an open-loop _OM using the

minimum wheel speed minimization criterion, would be opti-

mal. In this case, the desired torque T D and the weight-

ing matrix A of Table 1 are given by Equations (4) and (6),

respectively. The advantages of this new technique over the

current ST control laws are summarized below.

ADVANTAGES OVER THE CURRENT CP LAW

The mixed-mode minimum wheel speed law is better than the

current CP law 0ecause it computes the desired torque based

on the nominal momentum profile precomputed using an open-

loop control law with a half-orbit desaturation period. The

desired torque so determined has the following advantages:

i. It takes advantage of future geometrical variations

so that the proper amount of momentum will be

dumped at _he proper time.

2. Only the nonperiodic portion of the gravity-

gradient momentum will De dumped Dy the magnetic

torquers.

3. The desired torque is always nearly perpendicular

to the geomagnetic field so that very little energy

will De wasted in changing the direction rather

than reducing the magnitude of the momentum.

4. the reaction wheel center speed control loop is no

longer needed because the targeting moment_m-_NO M

automatically keeps the reaction wheel center speed

at zero. This greatly simplifies the onDoard com-

putation.
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ADVANTAGES OVER THE CURRENt ME LAW

The mixed-mode minimum wheel speed control law has the fol-

lowing advantages over the current ME law:

1. It reduces the updating frequency of the costate

vector P from 200 seconds to approximately 50 sec-

onds. This will reduce the deviation between the

actual and the predicted results when undetected

failure conditions exist.

2. There is no need to define a desaturation period

onDoard. Tnis eliminates the possibility of having

a near-singularity condition in computing the co-

state vector P.

3. Tne required onDoard computation is greatly simpli-

fied because it does not require tne predicted geo-

magnetic field computation, and no integration is

involved.

4. Minimization of wheel speeds reduces possible vi-

bration in the spacecraft.
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